• BZOJ5281: [Usaco2018 Open]Talent Show(01分数规划&DP)


    5281: [Usaco2018 Open]Talent Show

    Time Limit: 10 Sec  Memory Limit: 128 MB
    Submit: 166  Solved: 124
    [Submit][Status][Discuss]

    Description

    FarmerJohn要带着他的N头奶牛,方便起见编号为1…N,到农业展览会上去,参加每年的达牛秀!他的第i头奶牛重
    量为wi,才艺水平为ti,两者都是整数。在到达时,FarmerJohn就被今年达牛秀的新规则吓到了:
    (一)参加比赛的一组奶牛必须总重量至少为W
    (这是为了确保是强大的队伍在比赛,而不仅是强大的某头奶牛),并且
    (二)总才艺值与总重量的比值最大的一组获得胜利。
    FJ注意到他的所有奶牛的总重量不小于W,所以他能够派出符合规则(一)的队伍。帮助他确定这样的队伍中能够
    达到的最佳的才艺与重量的比值。

    Input

    输入的第一行包含N和W。下面N行,每行用两个整数wi和ti描述了一头奶牛。
    1≤N≤250
    1≤W≤1000
    1≤wi≤10^6
    1≤ti≤10^3

    Output

    请求出Farmer用一组总重量最少为W的奶牛最大可能达到的总才艺值与总重量的比值。
    如果你的答案是A,输出1000A向下取整的值,以使得输出是整数
    (当问题中的数不是一个整数的时候,向下取整操作在向下舍入到整数的时候去除所有小数部分)。

    Sample Input

    3 15
    20 21
    10 11
    30 31

    Sample Output

    1066
    在这个例子中,总体来看最佳的才艺与重量的比值应该是仅用一头才艺值为11、重量为10的奶牛,但是由于我们需
    要至少15单位的重量,最优解最终为使用这头奶牛加上才艺值为21、重量为20的奶牛。这样的话才艺与重量的比值
    为(11+21)/(10+20)=32/30=1.0666666...,乘以1000向下取整之后得到1066。
     
     
    思路:分子分母的最大形式显然需要二分后01分数规划求最大。 二分到mid的时候,我们按照t-w*mid排序。 这个时候出现问题了,我们是选择最前面几个直到体积大于等于W吗,显然不是的。 比如需要体积W=120的东西,现在有三种(w,t):(100,100),(70,35),(20,9); 显然选择1,3的比值比选择1,2搞,尽管2的性价比比3高。   主要是因为我们只需要W=120,2的性价比虽然高于3,但是无用的w也多了,拉低了整体性价比。
    #include<bits/stdc++.h>
    using namespace std;
    const int maxn=1010;
    struct in{
        int w,t; double xjb;
        friend bool operator <(in w,in v){ return w.xjb>v.xjb; }
    }s[maxn];int N,W; double dp[maxn];
    bool check(double Mid)
    {
        for(int i=1;i<=N;i++) s[i].xjb=(double)s[i].t-Mid*s[i].w;
        sort(s+1,s+N+1);
        for(int i=1;i<=W;i++) dp[i]=-1000000000.0; dp[0]=0.0;
        for(int i=1;i<=N;i++){
            for(int j=W;j>=0;j--){
                if(j+s[i].w>=W){
                    if(dp[j]+s[i].xjb>=0) return true;
                }
                else dp[j+s[i].w]=max(dp[j+s[i].w],dp[j]+s[i].xjb);
            }
        }
        return false;
    }
    int main()
    {
        scanf("%d%d",&N,&W);
        for(int i=1;i<=N;i++) scanf("%d%d",&s[i].w,&s[i].t);
        double L=0,R=1000000.0,Mid,ans=111; int num=100;
        while(num--){
            Mid=(L+R)/2;
            if(check(Mid)) L=Mid,ans=L;
            else R=Mid;
        }
        printf("%d
    ",(int)(ans*1000));
        return 0;
    }
     
     
     
     
  • 相关阅读:
    Elastic Search快速上手(2):将数据存入ES
    汇编学习笔记(24)
    汇编学习笔记(23)
    汇编学习笔记(22)
    汇编学习笔记(21)
    汇编学习笔记(20)
    汇编学习笔记(19)
    汇编学习笔记(18)
    汇编学习笔记(17)
    汇编学习笔记(16)
  • 原文地址:https://www.cnblogs.com/hua-dong/p/9956910.html
Copyright © 2020-2023  润新知