• 「BZOJ2510」弱题(矩阵乘法,降维)


    M个球,一开始每个球均有一个初始标号,标号范围为1~N且为整数,标号为i的球有ai个,并保证Σai = M
    每次操作等概率取出一个球(即取出每个球的概率均为1/M),若这个球标号为kk < N),则将它重新标号为k + 1;若这个球标号为N,则将其重标号为1。(取出球后并不将其丢弃)
    现在你需要求出,经过K次这样的操作后,每个标号的球的期望个数。

    Input

    第1行包含三个正整数NMK,表示了标号与球的个数以及操作次数。
    第2行包含N非负整数ai,表示初始标号为i的球有ai个。

    Output

    应包含N行,第i行为标号为i的球的期望个数,四舍五入保留3位小数。

    Sample Input

    2 3 2
    3 0

    Sample Output

    1.667
    1.333

    HINT

    「样例说明」
    第1次操作后,由于标号为2球个数为0,所以必然是一个标号为1的球变为标号为2的球。所以有2个标号为1的球,有1个标号为2的球。
    第2次操作后,有1/3的概率标号为2的球变为标号为1的球(此时标号为1的球有3个),有2/3的概率标号为1的球变为标号为2的球(此时标号为1的球有1个),所以标号为1的球的期望个数为1/3*3+2/3*1 = 5/3。同理可求出标号为2的球期望个数为4/3。
    「数据规模与约定」
    对于10%的数据,N ≤ 5, M ≤ 5, K ≤ 10;
    对于20%的数据,N ≤ 20, M ≤ 50, K ≤ 20;
    对于30%的数据,N ≤ 100, M ≤ 100, K ≤ 100;
    对于40%的数据,M ≤ 1000, K ≤ 1000;
    对于100%的数据,N ≤ 1000, M ≤ 100,000,000, K ≤ 2,147,483,647。

    Source

    2011福建集训

    和之前此题一样, POJ - 3150 :Cellular Automaton(特殊的矩阵,降维优化) 。

    用dp[i][j]表示i轮后j的数量,则dp=a*(base^K),由于base里面的矩阵有相似性,所以矩阵的复杂度可以优化到N^2;总的复杂度为O(N^2lgK)。

    权限题,无代码。

  • 相关阅读:
    我的shell脚本
    Shell中[]里面的条件判断
    编写shell脚本需要特别关注的注意点
    Excel文本获取拼音
    netsh wlan start hostednetwork
    windows cmd 看服务cpu、内存
    cmd cvf war包
    PLSQL查询最近编绎、创建、修改过的过程函数
    根据sid或sqlID查询SQL
    JS字符串类型转日期然后进行日期比较
  • 原文地址:https://www.cnblogs.com/hua-dong/p/9670998.html
Copyright © 2020-2023  润新知