For a vector →v=(x,y)v→=(x,y), define |v|=√x2+y2|v|=x2+y2.
Allen had a bit too much to drink at the bar, which is at the origin. There are nn vectors →v1,→v2,⋯,→vnv1→,v2→,⋯,vn→. Allen will make nn moves. As Allen's sense of direction is impaired, during the ii-th move he will either move in the direction →vivi→ or −→vi−vi→. In other words, if his position is currently p=(x,y)p=(x,y), he will either move to p+→vip+vi→ or p−→vip−vi→.
Allen doesn't want to wander too far from home (which happens to also be the bar). You need to help him figure out a sequence of moves (a sequence of signs for the vectors) such that his final position pp satisfies |p|≤1.5⋅106|p|≤1.5⋅106 so that he can stay safe.
The first line contains a single integer nn (1≤n≤1051≤n≤105) — the number of moves.
Each of the following lines contains two space-separated integers xixi and yiyi, meaning that →vi=(xi,yi)vi→=(xi,yi). We have that |vi|≤106|vi|≤106 for all ii.
Output a single line containing nn integers c1,c2,⋯,cnc1,c2,⋯,cn, each of which is either 11 or −1−1. Your solution is correct if the value of p=∑ni=1ci→vip=∑i=1ncivi→, satisfies |p|≤1.5⋅106|p|≤1.5⋅106.
It can be shown that a solution always exists under the given constraints.
3
999999 0
0 999999
999999 0
1 1 -1
1
-824590 246031
1
8
-67761 603277
640586 -396671
46147 -122580
569609 -2112
400 914208
131792 309779
-850150 -486293
5272 721899
1 1 1 1 1 1 1 -1
题意:给定一些向量,你可以改变它的符号,使得这些向量之和的长度小于1.5e6。
思路:考虑到每条边的长度小于1e6,所以任意两条边的向量和长度小于1.414e6<1.5e6。任意三条边的向量和(可以改变方向)的长度也成立,下面给出证明...
所以我们贪心, 保证向量和离原点更近. 然后下面的代码AC了,然后又被FST了.是因为每次我贪心原则是一样的.最后的结果有可能大于1.5e6. 我们需要加一些随机性, 多次贪心,直到结果满足题意.(这里随机的作用就算多次贪心,直到满足)
证明:每三个向量abc中都能找到两个向量合起来 <= 1e6,然后不断合并,最后只会剩下一个或者两个向量。
对于a和b,1,若ab小于60度,其中一个转向,则变为大于120度,<1e6;2,ab角度大于120度,则其向量和的长度小于1e6。3,角度在60到120度之间,那么第三边c,不论怎么放,都或与a或与b满足上面的关系,使得其向量和长度小于1e6,那么一直这样合并,最后只剩下一边或者两边,而两边的情况最坏为1.414e6
FST代码,WA79:
#include<bits/stdc++.h> #define ll long long using namespace std; const int maxn=1000000; const ll p=1500000; ll ans[maxn+10],x[maxn+10],y[maxn+10]; ll X,Y,P; int main() { int N,i,j; P=p*p;scanf("%d",&N); for(i=1;i<=N;i++){ scanf("%I64d%I64d",&x[i],&y[i]); if(X>=0&&Y>=0&&x[i]<=0&&y[i]<=0) X+=x[i],Y+=y[i],ans[i]=1; else if(X>=0&&Y>=0&&x[i]>=0&&y[i]>=0) X-=x[i],Y-=y[i],ans[i]=-1; else if(X<=0&&Y<=0&&x[i]<=0&&y[i]<=0) X-=x[i],Y-=y[i],ans[i]=-1; else if(X<=0&&Y<=0&&x[i]>=0&&y[i]>=0) X+=x[i],Y+=y[i],ans[i]=1; else if((X+x[i])*(X+x[i])+(Y+y[i])*(Y+y[i])<(X-x[i])*(X-x[i])+(Y-y[i])*(Y-y[i])) X+=x[i],Y+=y[i],ans[i]=1; else X-=x[i],Y-=y[i],ans[i]=-1; } for(i=1;i<=N;i++) printf("%d ",ans[i]); return 0; }
AC代码:
#include<bits/stdc++.h> #define ll long long using namespace std; const int maxn=1000000; const ll p=1500000; ll X,Y,P; int ans[maxn]; struct in{ ll x,y,id; }s[maxn]; int main() { int N,i,j; P=p*p;scanf("%d",&N); for(i=1;i<=N;i++){ scanf("%I64d%I64d",&s[i].x,&s[i].y); s[i].id=i; } while(true){ random_shuffle(s+1,s+N+1); X=Y=0; for(i=1;i<=N;i++){ if((X+s[i].x)*(X+s[i].x)+(Y+s[i].y)*(Y+s[i].y)>(X-s[i].x)*(X-s[i].x)+(Y-s[i].y)*(Y-s[i].y)) X-=s[i].x,Y-=s[i].y,ans[s[i].id]=-1; else X+=s[i].x,Y+=s[i].y,ans[s[i].id]=1; } if(X*X+Y*Y<=P) { for(i=1;i<=N;i++) printf("%d ",ans[i]); return 0; } } return 0; }
(div1E也是需要随机算法!!!