• POJ2976:Dropping tests(01分数规划入门)


    In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

    .

    Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

    Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

    Input

    The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

    Output

    For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

    Sample Input

    3 1
    5 0 2
    5 1 6
    4 2
    1 2 7 9
    5 6 7 9
    0 0

    Sample Output

    83
    100

    Hint

    To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

    题意:有几门成绩,现在要求选N-K门,使得平均成绩最高,求最高平均成绩。

    思路:01分数规划。

    有三种需要掌握的01分数规划,之前最大流的时候遇到过,现在有些想法,有空再来实现。

    #include<cstdio>
    #include<cstdlib>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const double eps=1e-6;
    int N,K;
    struct in
    {
        double x,y;
        double res;
        bool friend operator <(in a,in b){
            return a.res>b.res;
        }
    }a[1010];
    bool check(double Mid)
    {
        for(int i=1;i<=N;i++) a[i].res=a[i].x-Mid*a[i].y;
        sort(a+1,a+N+1);
        double tx=0;
        for(int i=1;i<=K;i++) tx+=a[i].res;
        if(tx>=-eps) return true;
        return false;
    }
    int main()
    {
        while(~scanf("%d%d",&N,&K)&&(N||K)){
            K=N-K;
            for(int i=1;i<=N;i++) scanf("%lf",&a[i].x),a[i].x*=100.0;
            for(int i=1;i<=N;i++) scanf("%lf",&a[i].y);
            double L=0,R=100,Mid,ans=0;
            while(R-L>eps){
                Mid=(L+R)/2;
                if(check(Mid)) ans=Mid,L=Mid+eps;
                else R=Mid-eps;
            }
            printf("%.0lf
    ",ans);
        }
        return 0;
    } 
     
  • 相关阅读:
    Redis源码阅读笔记(2)——字典(Map)实现原理
    Partition List ——LeetCode
    docker format (golang template)
    markdown 换行
    pecan快速教程
    nvdimm
    k8s device plugin
    linux 文件同步
    复制MIFARE Classic卡
    install docker swarm on centos
  • 原文地址:https://www.cnblogs.com/hua-dong/p/8525981.html
Copyright © 2020-2023  润新知