• POJ2891Strange Way to Express Integers (线性同余方程组)


    Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

    Choose k different positive integers a1a2…, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

    “It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

    Since Elina is new to programming, this problem is too difficult for her. Can you help her?

    Input

    The input contains multiple test cases. Each test cases consists of some lines.

    • Line 1: Contains the integer k.
    • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

    Output

    Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

    Sample Input

    2
    8 7
    11 9

    Sample Output

    31

    Hint

    All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

    线性同余方程组,终于自己写了一遍。棒棒哒。

    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<cmath>
    #include<iostream>
    #define ll long long
    using namespace std;
    void Ex_gcd(ll a,ll b,ll &d,ll &x,ll &y)
    {
        if(b==0){ d=a; x=1; y=0; return ;}
        Ex_gcd(b,a%b,d,y,x); y-=a/b*x;
    }
    int main()
    {
        ll c1,c2,c,a,b,d,x,y,n;
        while(~scanf("%lld",&n)){
            bool Flag=false;
            scanf("%lld%lld",&a,&c1);
            for(int i=2;i<=n;i++) {
                scanf("%lld%lld",&b,&c2); 
                if(Flag) continue; c=c2-c1;
                Ex_gcd(a,b,d,x,y);
                if(c%d!=0) { printf("-1
    "); Flag=true;}
                x=((c/d*x)%(b/d)+b/d)%(b/d);//最小正单元 
                c1=a*x+c1;a=a*b/d;
            }    
            if(!Flag) printf("%lld
    ",c1);
        }   return 0;
    }
  • 相关阅读:
    求菲波那契数列的第n个数
    一个球,初始高度100,每次落下回弹一半高度,求第n次落下球走的距离
    MySQL优化
    linux常用命令2
    win7安装ANT
    win7配置java环境变量
    kvm虚拟机磁盘文件读取小结
    kvm linux虚拟机在线扩展磁盘
    binlog2sql
    linux上 查看mysql的binglog日志
  • 原文地址:https://www.cnblogs.com/hua-dong/p/8052925.html
Copyright © 2020-2023  润新知