Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 31583 Accepted Submission(s): 11174
Total Submission(s): 31583 Accepted Submission(s): 11174
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8
Hint
Huge input, scanf and dynamic programming is recommended.
不加优化:
#include<cstdio> #include<cstdlib> #include<iostream> #include<memory.h> using namespace std; int dp[2][1000010],a[1000010]; int main() { int n,m,j,i,k,Max; while(~scanf("%d%d",&m,&n)){ Max=0; memset(dp,0,sizeof(dp)); for(i=1;i<=n;i++) scanf("%d",&a[i]); for(i=1;i<=m;i++) for(j=i+1;j<=n;j++){ dp[i%2][j]=dp[i%2][j-1]+a[j]; for(k=i-1;k<=j-1;k++) if(dp[(i-1)%2][k]+a[j]>dp[i%2][j]) dp[i%2][j]=dp[(i-1)%2][k]+a[j]; if(i==m&&dp[i%2][j]>Max) Max=dp[i%2][j]; } printf("%d ",Max); } return 0; }
然后发现k的范围【i-1,j-1】之间可以直接记录一个Maxp
emmmmm,以前做过还是搞忘了
#include<cstdio> #include<cstdlib> #include<iostream> #include<memory.h> using namespace std; int dp[2][1000010],a[1000010]; int main() { int n,m,j,i,k,Max,Maxp; while(~scanf("%d%d",&m,&n)){ Max=-1000000001; for(i=1;i<=n;i++) scanf("%d",&a[i]); for(i=1;i<=n;i++) dp[0][i]=dp[1][i]=0; for(i=1;i<=m;i++) { Maxp=dp[(i-1)%2][i-1]; dp[i%2][i]=dp[(i-1)%2][i-1]+a[i]; for(j=i+1;j<=n-m+i;j++){ if(dp[(i-1)%2][j-1]>Maxp) Maxp=dp[(i-1)%2][j-1]; dp[i%2][j]=dp[i%2][j-1]+a[j]; if(Maxp+a[j]>dp[i%2][j]) dp[i%2][j]=Maxp+a[j]; } } for(i=m;i<=n;i++) if(dp[m%2][i]>Max) Max=dp[m%2][i]; printf("%d ",Max); } return 0; }