• Mr. Kitayuta's Colorful Graph CodeForces


    Mr. Kitayuta has just bought an undirected graph with n vertices and m edges. The vertices of the graph are numbered from 1 to n. Each edge, namely edge i, has a color ci, connecting vertex ai and bi.

    Mr. Kitayuta wants you to process the following q queries.

    In the i-th query, he gives you two integers - ui and vi.

    Find the number of the colors that satisfy the following condition: the edges of that color connect vertex ui and vertex vi directly or indirectly.


    Input

    The first line of the input contains space-separated two integers - n and m(2 ≤ n ≤ 105, 1 ≤ m ≤ 105), denoting the number of the vertices and the number of the edges, respectively.

    The next m lines contain space-separated three integers - ai, bi(1 ≤ ai < bi ≤ n) and ci(1 ≤ ci ≤ m). Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if i ≠ j, (ai, bi, ci) ≠ (aj, bj, cj).

    The next line contains a integer- q(1 ≤ q ≤ 105), denoting the number of the queries.

    Then follows q lines, containing space-separated two integers - ui and vi(1 ≤ ui, vi ≤ n). It is guaranteed that ui ≠ vi.

    Output

    For each query, print the answer in a separate line.

    Examples
    Input
    4 5
    1 2 1
    1 2 2
    2 3 1
    2 3 3
    2 4 3
    3
    1 2
    3 4
    1 4
    Output
    2
    1
    0
    Input
    5 7
    1 5 1
    2 5 1
    3 5 1
    4 5 1
    1 2 2
    2 3 2
    3 4 2
    5
    1 5
    5 1
    2 5
    1 5
    1 4
    Output
    1
    1
    1
    1
    2
    Note

    Let's consider the first sample.

    The figure above shows the first sample.
    • Vertex 1 and vertex 2 are connected by color 1 and 2.
    • Vertex 3 and vertex 4 are connected by color 3.
    • Vertex 1 and vertex 4 are not connected by any single color.

    题意:给定N点M边无向图,每边有自己的颜色,Q次询问,每次给出(u,v),询问多少种颜色,使得u和v连通。

    思路:排序,同一种颜色同时处理,然后离线回答每个询问,但是有可以一个点存在M种颜色里,而且存在Q次询问里,所以最坏情况是M*Q*log。log是并查集的复杂度。所以要加均摊。 如果一种颜色的点比较多,就上面那么回答; 否则,我们就暴力记录点对。

    总的复杂度是Q*sqrt(N)*log(N); 4s可以过了; 实际上只跑了500ms,还可以。

    #include<bits/stdc++.h>
    #define pii pair<int,int>
    #define mp make_pair
    #define F first
    #define S second
    #define rep(i,a,b) for(int i=a;i<=b;i++)
    using namespace std;
    const int maxn=200010;
    int Laxt[maxn],Next[maxn],To[maxn],id[maxn],ans[maxn],cnt;
    int a[maxn],b[maxn],fa[maxn],times[maxn],T,q[maxn],tot,N;
    map<pii,int>Mp;
    map<pii,int>fcy;
    struct in{
        int u,v,col;
        bool friend operator <(in w,in v){ return w.col<v.col; }
    }s[maxn];
    void add(int u,int v,int o)
    {
        Next[++cnt]=Laxt[u]; Laxt[u]=cnt; To[cnt]=v; id[cnt]=o;
    }
    int find(int x){
        if(x==fa[x]) return x;
        return fa[x]=find(fa[x]);
    }
    void merge(int x,int y)
    {
        int fx=find(x),fy=find(y);
        fa[fx]=fy;
    }
    int main()
    {
        int M,Q,u,v;
        scanf("%d%d",&N,&M);
        rep(i,1,M) scanf("%d%d%d",&s[i].u,&s[i].v,&s[i].col);
        sort(s+1,s+M+1);
        scanf("%d",&Q);
        rep(i,1,Q){
            scanf("%d%d",&a[i],&b[i]); if(a[i]>b[i]) swap(a[i],b[i]);
            add(a[i],b[i],i);
            fcy[mp(a[i],b[i])]=1;
        }
        rep(i,1,M){
            int j=i; T++; merge(s[i].u,s[i].v);
            while(j+1<=M&&s[j+1].col==s[i].col) j++;
            tot=0;
            rep(k,i,j) q[++tot]=s[k].u,q[++tot]=s[k].v;
            sort(q+1,q+tot+1); tot=unique(q+1,q+tot+1)-(q+1);
            rep(k,1,tot) fa[q[k]]=q[k],times[q[k]]=T;
            rep(k,i,j) merge(s[k].u,s[k].v);
            if(tot>sqrt(N)) rep(k,1,tot) {
                for(int w=Laxt[q[k]];w;w=Next[w]){
                    if(times[To[w]]==T&&find(q[k])==find(To[w])) ans[id[w]]++;
                }
            }
            else {
                rep(k,1,tot)
                 rep(p,k+1,tot){
                      if(find(q[k])==find(q[p])&&fcy.find(mp(q[k],q[p]))!=fcy.end()) Mp[mp(q[k],q[p])]++;
                }
            }
            i=j;
        }
        rep(i,1,Q) printf("%d
    ",ans[i]+Mp[mp(a[i],b[i])]);
        return 0;
    }

    可撤销并查集版本,530ms

    #include<bits/stdc++.h>
    #define pii pair<int,int>
    #define mp make_pair
    #define F first
    #define S second
    #define rep(i,a,b) for(int i=a;i<=b;i++)
    using namespace std;
    const int maxn=1000010;
    int Laxt[maxn],Next[maxn],To[maxn],id[maxn],ans[maxn],cnt;
    int a[maxn],b[maxn],fa[maxn],times[maxn],T,q[maxn],tot,N;
    map<pii,int>Mp,fcy;
    struct in{
        int u,v,col;
        bool friend operator <(in w,in v){ return w.col<v.col; }
    }s[maxn];
    void add(int u,int v,int o)
    {
        Next[++cnt]=Laxt[u]; Laxt[u]=cnt; To[cnt]=v; id[cnt]=o;
    }
    int find(int x){
        if(times[x]!=T) times[x]=T, fa[x]=x;
        if(x==fa[x]) return x;
        return fa[x]=find(fa[x]);
    }
    void merge(int x,int y)
    {
        int fx=find(x),fy=find(y);
        fa[fx]=fy;
    }
    int main()
    {
        int M,Q,u,v;
        scanf("%d%d",&N,&M);
        rep(i,1,M) scanf("%d%d%d",&s[i].u,&s[i].v,&s[i].col);
        sort(s+1,s+M+1);
        scanf("%d",&Q);
        rep(i,1,Q){
            scanf("%d%d",&a[i],&b[i]); if(a[i]>b[i]) swap(a[i],b[i]);
            add(a[i],b[i],i);
            fcy[mp(a[i],b[i])]=1;
        }
        rep(i,1,M){
            int j=i; T++; merge(s[i].u,s[i].v);
            while(j+1<=M&&s[j+1].col==s[i].col) j++;
            tot=0;
            rep(k,i,j) q[++tot]=s[k].u,q[++tot]=s[k].v,merge(s[k].u,s[k].v);;
            sort(q+1,q+tot+1); tot=unique(q+1,q+tot+1)-(q+1);
            if(tot>sqrt(N)) rep(k,1,tot) {
                for(int w=Laxt[q[k]];w;w=Next[w]){
                    if(times[To[w]]==T&&find(q[k])==find(To[w])) ans[id[w]]++;
                }
            }
            else {
                rep(k,1,tot)
                 rep(p,k+1,tot){
                      if(find(q[k])==find(q[p])&&fcy.find(mp(q[k],q[p]))!=fcy.end()) Mp[mp(q[k],q[p])]++;
                }
            }
            i=j;
        }
        rep(i,1,Q) printf("%d
    ",ans[i]+Mp[mp(a[i],b[i])]);
        return 0;
    }
    View Code
  • 相关阅读:
    java 日志体系
    java mail 接收邮件
    Spring 事物Transaction
    Spring 文件上传MultipartFile 执行流程分析
    centos7安装Elasticsearch7
    centos7安装docker笔记
    docker安装
    redis
    springboot+redis+nginx+分布式session
    tomcat程序和webapp分离
  • 原文地址:https://www.cnblogs.com/hua-dong/p/10178093.html
Copyright © 2020-2023  润新知