• Red and Black


      There is a rectangular room, covered with square tiles. Each tile is colored either red or black. A man is standing on a black tile. From a tile, he can move to one of four adjacent tiles. But he can't move on red tiles, he can move only on black tiles. 

    Write a program to count the number of black tiles which he can reach by repeating the moves described above. 

    Input

      The input consists of multiple data sets. A data set starts with a line containing two positive integers W and H; W and H are the numbers of tiles in the x- and y- directions, respectively. W and H are not more than 20. 

    There are H more lines in the data set, each of which includes W characters. Each character represents the color of a tile as follows. 

    '.' - a black tile 
    '#' - a red tile 
    '@' - a man on a black tile(appears exactly once in a data set) 
    Output

      For each data set, your program should output a line which contains the number of tiles he can reach from the initial tile (including itself). 
    Sample Input

    6 9
    ....#.
    .....#
    ......
    ......
    ......
    ......
    ......
    #@...#
    .#..#.
    11 9
    .#.........
    .#.#######.
    .#.#.....#.
    .#.#.###.#.
    .#.#..@#.#.
    .#.#####.#.
    .#.......#.
    .#########.
    ...........
    11 6
    ..#..#..#..
    ..#..#..#..
    ..#..#..###
    ..#..#..#@.
    ..#..#..#..
    ..#..#..#..
    7 7
    ..#.#..
    ..#.#..
    ###.###
    ...@...
    ###.###
    ..#.#..
    ..#.#..
    0 0

    Sample Output

    45
    59
    6
    13
    代码:
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    char a[25][25];
    int v[25][25];
    int fx[4]={0,0,1,-1},fy[4]={1,-1,0,0};
    int m,n,e1,e2,ans;
    void dfs(int x,int y)
    { v[x][y]=1;
     for(int i=0;i<4;i++)
       {int xx,yy;
        xx=x+fx[i];
        yy=y+fy[i];
        
         if(xx>=0&&yy>=0&&xx<n&&yy<m&&a[xx][yy]=='.'&&!v[xx][yy]) //xx<n和yy<m刚开始写反了,,,
         {ans++;
          
          dfs(xx,yy);
             
         }
       }
        
    }
    int main()
    {
        while(scanf("%d %d",&m,&n)!=EOF&&(n||m))
        {for(int i=0;i<n;i++)
           scanf("%s",a[i]);
         memset(v,0,sizeof(v));
         for(int i=0;i<n;i++)
          {for(int j=0;j<m;j++)
            {if(a[i][j]=='@')
               {e1=i;
                e2=j;
                
               
               }
                
            }
          
              
          }
          ans=1;
          dfs(e1,e2);
          printf("%d
    ",ans);
            
        }
        return 0;
    }


  • 相关阅读:
    【题解】SCOI2007组队
    【题解】Atcoder AGC#16 E-Poor Turkeys
    整数拆分 [dp+多项式插值]
    王子 [费用流]
    [ARC083F] Collecting Balls [建二分图+环套树定向+建拓扑图+树的拓扑序计数]
    [BZOJ3196] 二逼平衡树 [权值线段树套位置平衡树]
    [TJOI2017][bzoj4889] 不勤劳的图书管理员 [线段树套线段树]
    [HNOI2015][bzoj4009] 接水果 [整体二分+扫描线]
    [bzoj3065] 带插入区间第k小值 [重量平衡树套线段树]
    [luogu3676] 小清新数据结构题 [树链剖分+线段树]
  • 原文地址:https://www.cnblogs.com/hss-521/p/7264671.html
Copyright © 2020-2023  润新知