• Apache Spark源码走读之24 -- Sort-based Shuffle的设计与实现


    欢迎转载,转载请注明出处。

    概要

    Spark 1.1中对spark core的一个重大改进就是引入了sort-based shuffle处理机制,本文就该处理机制的实现进行初步的分析。

    Sort-based Shuffle之初体验

    通过一个小的实验来直观的感受一下sort-based shuffle算法会产生哪些中间文件,具体实验步骤如下所述。

    步骤1: 修改conf/spark-default.conf, 加入如下内容

    spark.shuffle.manager SORT
    

    步骤2: 运行spark-shell

    SPARK_LOCAL_IP=127.0.0.1 $SPARK_HOME/bin/spark-shell
    

     步骤3: 执行wordcount

    sc.textFile("README.md").flatMap(l => l.split(" ")).map(w=>(w,1)).reduceByKey(_ + _).collect
    

     步骤4: 查看生成的中间文件

    find /tmp/spark-local* -type f
    

    文件查找结果如下所示

    /tmp/spark-local-20140919091822-aa66/0f/shuffle_0_1_0.index
    /tmp/spark-local-20140919091822-aa66/30/shuffle_0_0_0.index
    /tmp/spark-local-20140919091822-aa66/0c/shuffle_0_0_0.data
    /tmp/spark-local-20140919091822-aa66/15/shuffle_0_1_0.data
    

    可以看到生成了两人种后缀的文件,分别为data和index类型,这两者的用途在后续分析中会详细讲述。

    如果我们做一下对比实验,将shuffle模式改为Hash,再来观看生成的文件,就会找到区别。将原先配置文件中的SORT改为HASH,重新启动spark-shell,执行相同的wordcount之后,在tmp目录下找到的文件列表如下。

    /tmp/spark-local-20140919092949-14cc/10/shuffle_0_1_3
    /tmp/spark-local-20140919092949-14cc/0f/shuffle_0_1_2
    /tmp/spark-local-20140919092949-14cc/0f/shuffle_0_0_3
    /tmp/spark-local-20140919092949-14cc/0c/shuffle_0_0_0
    /tmp/spark-local-20140919092949-14cc/0d/shuffle_0_1_0
    /tmp/spark-local-20140919092949-14cc/0d/shuffle_0_0_1
    /tmp/spark-local-20140919092949-14cc/0e/shuffle_0_1_1
    /tmp/spark-local-20140919092949-14cc/0e/shuffle_0_0_2
    

    两者生成的文件数量差异非常大,具体数值计算如下

    1. 在HASH模式下,每一次shuffle会生成M*R的数量的文件,如上述wordcount例子中,整个job有一次shuffle过程,由于输入文件默认分片为2,故M个数为2,而spark.default.parallelism配置的值为4,故R为4,所以总共生成1*2*4=8个文件。shuffle_0_1_2解读为shuffle+shuffle_id+map_id+reduce_id,故0_1_2表示由第0次shuffle中的第1个maptask生成的文件,该文件内容会被第2个reduce task消费
    2. 在SORT模式下,一个Map Task只生成一个文件,而不管生成的文件要被多少的Reduce消费,故文件个数是M的数量,由于wordcount中的默认分片为2,故只生成两个data文件

    多次shuffle

    刚才的示例中只有一次shuffle过程,我们可以通过小小的改动来达到两次shuffle,代码如下

    sc.textFile("README.md").flatMap(l => l.split(" ")).map(w => (w,1)).reduceByKey(_ + _).map(p=>(p._2,p._1)).groupByKey.collect
    

    上述代码将reduceByKey的结果通过map进行反转,即将原来的(w, count)转换为(count,w),然后根据出现次数进行归类。 groupByKey会再次导致数据shuffle过程。

    在HASH模式下产生的文件如下所示

    /tmp/spark-local-20140919094531-1cb6/12/shuffle_0_3_3
    /tmp/spark-local-20140919094531-1cb6/0c/shuffle_0_0_0
    /tmp/spark-local-20140919094531-1cb6/11/shuffle_0_2_3
    /tmp/spark-local-20140919094531-1cb6/11/shuffle_0_3_2
    /tmp/spark-local-20140919094531-1cb6/11/shuffle_1_1_3
    /tmp/spark-local-20140919094531-1cb6/10/shuffle_0_2_2
    /tmp/spark-local-20140919094531-1cb6/10/shuffle_0_1_3
    /tmp/spark-local-20140919094531-1cb6/10/shuffle_0_3_1
    /tmp/spark-local-20140919094531-1cb6/10/shuffle_1_0_3
    /tmp/spark-local-20140919094531-1cb6/10/shuffle_1_1_2
    /tmp/spark-local-20140919094531-1cb6/0f/shuffle_0_0_3
    /tmp/spark-local-20140919094531-1cb6/0f/shuffle_0_3_0
    /tmp/spark-local-20140919094531-1cb6/0f/shuffle_0_2_1
    /tmp/spark-local-20140919094531-1cb6/0f/shuffle_0_1_2
    /tmp/spark-local-20140919094531-1cb6/0f/shuffle_1_0_2
    /tmp/spark-local-20140919094531-1cb6/0f/shuffle_1_1_1
    /tmp/spark-local-20140919094531-1cb6/0d/shuffle_0_0_1
    /tmp/spark-local-20140919094531-1cb6/0d/shuffle_0_1_0
    /tmp/spark-local-20140919094531-1cb6/0d/shuffle_1_0_0
    /tmp/spark-local-20140919094531-1cb6/0e/shuffle_0_2_0
    /tmp/spark-local-20140919094531-1cb6/0e/shuffle_0_1_1
    /tmp/spark-local-20140919094531-1cb6/0e/shuffle_0_0_2
    /tmp/spark-local-20140919094531-1cb6/0e/shuffle_1_0_1
    /tmp/spark-local-20140919094531-1cb6/0e/shuffle_1_1_0
    

    引入一次新的shuffle,产生了大量的中间文件

    如果是使用SORT,效果如何呢?只会增加M个文件,由于在新的shuffle过程中,map task数目为4,所以总共的文件是2+4=6。

    /tmp/spark-local-20140919094731-034a/29/shuffle_0_3_0.data
    /tmp/spark-local-20140919094731-034a/30/shuffle_0_0_0.index
    /tmp/spark-local-20140919094731-034a/15/shuffle_0_1_0.data
    /tmp/spark-local-20140919094731-034a/36/shuffle_0_2_0.data
    /tmp/spark-local-20140919094731-034a/0c/shuffle_0_0_0.data
    /tmp/spark-local-20140919094731-034a/32/shuffle_0_2_0.index
    /tmp/spark-local-20140919094731-034a/32/shuffle_1_1_0.index
    /tmp/spark-local-20140919094731-034a/0f/shuffle_0_1_0.index
    /tmp/spark-local-20140919094731-034a/0f/shuffle_1_0_0.index
    /tmp/spark-local-20140919094731-034a/0a/shuffle_1_1_0.data
    /tmp/spark-local-20140919094731-034a/2b/shuffle_1_0_0.data
    /tmp/spark-local-20140919094731-034a/0d/shuffle_0_3_0.index
    

    值得指出的是shuffle_0和shuffle_1的执行次序问题,数字越大越先执行,由于spark job提交的时候是从后往前倒推的,故0是最后将执行,而前面的先执行。

    Sort-based Shuffle的设计思想

    sort-based shuffle的总体指导思想是一个map task最终只生成一个shuffle文件,那么后续的reduce task是如何从这一个shuffle文件中得到自己的partition呢,这个时候就需要引入一个新的文件类型即index文件。

    其具体实现步骤如下:

    1. Map Task在读取自己输入的partition之后,将计算结果写入到ExternalSorter
    2. ExternalSorter会使用一个map来存储新的计算结果,新的计算结果根据partiton分类,如果是有combine操作,则需要将新的值与原有的值进行合并
    3. 如果ExternalSorter中的map占用的内存已经超越了使用的阀值,则将map中的内容spill到磁盘中,每一次spill产生一个不同的文件
    4. 当输入Partition中的所有数据都已经处理完毕之后,这时有可能一部分计算结果在内存中,另一部分计算结果在spill的一到多个文件之中,这时通过merge操作将内存和spill文件中的内容合并整到一个文件里
    5. 最后将每一个partition的在data文件中的起始位置和结束位置写入到index文件

    相应的源文件

    1. SortShuffleManager.scala
    2. SortShuffleWriter.scala
    3. ExternalSorter.scala
    4. IndexShuffleBlockManager.scala

    几个重要的函数

    SortShuffleWriter.write

      override def write(records: Iterator[_ >: Product2[K, V]]): Unit = {
        if (dep.mapSideCombine) {
          if (!dep.aggregator.isDefined) {
            throw new IllegalStateException("Aggregator is empty for map-side combine")
          }
          sorter = new ExternalSorter[K, V, C](
            dep.aggregator, Some(dep.partitioner), dep.keyOrdering, dep.serializer)
          sorter.insertAll(records)
        } else {
          // In this case we pass neither an aggregator nor an ordering to the sorter, because we don't
          // care whether the keys get sorted in each partition; that will be done on the reduce side
          // if the operation being run is sortByKey.
          sorter = new ExternalSorter[K, V, V](
            None, Some(dep.partitioner), None, dep.serializer)
          sorter.insertAll(records)
        }
    
        val outputFile = shuffleBlockManager.getDataFile(dep.shuffleId, mapId)
        val blockId = shuffleBlockManager.consolidateId(dep.shuffleId, mapId)
        val partitionLengths = sorter.writePartitionedFile(blockId, context, outputFile)
        shuffleBlockManager.writeIndexFile(dep.shuffleId, mapId, partitionLengths)
    
        mapStatus = new MapStatus(blockManager.blockManagerId,
          partitionLengths.map(MapOutputTracker.compressSize))
      }
    

    ExternalSorter.insertAll

    def insertAll(records: Iterator[_  {
            if (hadValue) mergeValue(oldValue, kv._2) else createCombiner(kv._2)
          }
          while (records.hasNext) {
            elementsRead += 1
            kv = records.next()
            map.changeValue((getPartition(kv._1), kv._1), update)
            maybeSpill(usingMap = true)
          }
        } else {
          // Stick values into our buffer
          while (records.hasNext) {
            elementsRead += 1
            val kv = records.next()
            buffer.insert((getPartition(kv._1), kv._1), kv._2.asInstanceOf[C])
            maybeSpill(usingMap = false)
          }
        }
      }
    

    writePartitionedFile将内存中的数据和spill文件中内容一起合并到一个文件当中

    def writePartitionedFile(
          blockId: BlockId,
          context: TaskContext,
          outputFile: File): Array[Long] = {
    
        // Track location of each range in the output file
        val lengths = new Array[Long](numPartitions)
    
        if (bypassMergeSort && partitionWriters != null) {
          // We decided to write separate files for each partition, so just concatenate them. To keep
          // this simple we spill out the current in-memory collection so that everything is in files.
          spillToPartitionFiles(if (aggregator.isDefined) map else buffer)
          partitionWriters.foreach(_.commitAndClose())
          var out: FileOutputStream = null
          var in: FileInputStream = null
          try {
            out = new FileOutputStream(outputFile)
            for (i <- 0 until numPartitions) {
              in = new FileInputStream(partitionWriters(i).fileSegment().file)
              val size = org.apache.spark.util.Utils.copyStream(in, out, false)
              in.close()
              in = null
              lengths(i) = size
            }
          } finally {
            if (out != null) {
              out.close()
            }
            if (in != null) {
              in.close()
            }
          }
        } else {
          // Either we're not bypassing merge-sort or we have only in-memory data; get an iterator by
          // partition and just write everything directly.
          for ((id, elements) <- this.partitionedIterator) {
            if (elements.hasNext) {
              val writer = blockManager.getDiskWriter(
                blockId, outputFile, ser, fileBufferSize, context.taskMetrics.shuffleWriteMetrics.get)
              for (elem 

    而数据读取过程中则需要使用IndexShuffleBlockManager来获取Partiton的具体位置

      override def getBlockData(blockId: ShuffleBlockId): ManagedBuffer = {
        // The block is actually going to be a range of a single map output file for this map, so
        // find out the consolidated file, then the offset within that from our index
        val indexFile = getIndexFile(blockId.shuffleId, blockId.mapId)
    
        val in = new DataInputStream(new FileInputStream(indexFile))
        try {
          in.skip(blockId.reduceId * 8)
          val offset = in.readLong()
          val nextOffset = in.readLong()
          new FileSegmentManagedBuffer(
            getDataFile(blockId.shuffleId, blockId.mapId),
            offset,
            nextOffset - offset)
        } finally {
          in.close()
        }
      }
    

    参数资料

    1. 详细探究spark的shuffle 实现
    2. spark-2045 sort-based shuffle implementation
  • 相关阅读:
    php isset()与empty()的使用
    , , 的区别
    让IE6 IE7 IE8 IE9 IE10 IE11支持Bootstrap的解决方法
    <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
    当导航条滚动到顶部时固定到顶部
    JS:window.onload的使用
    jquery里面.length和.size()有什么区别
    2017.4.13(内置函数)作业
    文件内容的增删改查
    用户登陆程序,密码三次错误自动锁定用户名。
  • 原文地址:https://www.cnblogs.com/hseagle/p/3979744.html
Copyright © 2020-2023  润新知