To The Max
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 11715 Accepted Submission(s): 5661
Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Sample Output
15
Source
题意:给你一个n*n的矩阵 输入比较恶心 无视就可以了 问最大的子矩阵和
题解:
1 /****************************** 2 code by drizzle 3 blog: www.cnblogs.com/hsd-/ 4 ^ ^ ^ ^ 5 O O 6 ******************************/ 7 //#include<bits/stdc++.h> 8 #include<iostream> 9 #include<cstring> 10 #include<cmath> 11 #include<cstdio> 12 #define ll long long 13 #define mod 1000000007 14 #define PI acos(-1.0) 15 using namespace std; 16 int main() 17 { 18 int a[105][105]; 19 int b[105]; 20 int n; 21 while(scanf("%d",&n)!=EOF) 22 { 23 for(int i=1;i<=n;i++) 24 { 25 for(int j=1;j<=n;j++) 26 scanf("%d",&a[i][j]); 27 } 28 int maxn=-100000; 29 for(int i=1;i<=n;i++) 30 { 31 memset(b,0,sizeof(b)); 32 for(int j=i;j<=n;j++) 33 { 34 int sum=0; 35 for(int k=1;k<=n;k++) 36 { 37 b[k]+=a[j][k]; 38 sum+=b[k]; 39 if(sum<0) sum=b[k]; 40 if(sum>maxn) maxn=sum; 41 } 42 } 43 } 44 printf("%d ",maxn); 45 } 46 return 0; 47 }