• HDU 1159 最长公共子序列(n*m)


    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 32693    Accepted Submission(s): 14786


    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
     
    Sample Input
    abcfbc abfcab
    programming contest
    abcd mnp
     
    Sample Output
    4
    2
    0
     
    Source
     
    题意:求两个字符串的最长公共子序列的长度
     
    题解: dp[i][j] 表示a串前i个字符与b串前j个字符 最长公共子序列的长度 N(n*m)
             当a[i]==a[j]时  dp[i][j]=dp[i-1][j-1]+1;
            否则 dp[i][j]=max(dp[i-1][j],dp[i][j-1])
     
     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdio>
     4 using namespace std;
     5 char a[1005],b[1005];
     6 int dp[1005][1005];
     7 int main()
     8 {
     9     while(cin>>a>>b)
    10 {
    11     int len1=strlen(a);
    12     int len2=strlen(b);
    13     memset(dp,0,sizeof(dp));
    14     for(int i=1;i<=len1;i++)
    15     for(int j=1;j<=len2;j++)
    16     {
    17         if(a[i-1]==b[j-1])
    18         dp[i][j]=dp[i-1][j-1]+1;
    19         else
    20         dp[i][j]=max(dp[i-1][j],dp[i][j-1]); 
    21     }
    22     cout<<dp[len1][len2]<<endl;
    23 }
    24     return 0;
    25 }
     
  • 相关阅读:
    717. 1比特与2比特字符
    697. 数组的度
    674. 最长连续递增序列
    665. 非递减数列
    661. 图片平滑器
    643. 子数组最大平均数 I
    plink计算两个SNP位点的连锁不平衡值(LD)
    GWAS群体分层校正,该选用多少个PCA
    PyCharm的安装和应用
    GWAS后续分析:多基因风险评分(Polygenic Risk Score)的计算
  • 原文地址:https://www.cnblogs.com/hsd-/p/5492947.html
Copyright © 2020-2023  润新知