• A


    A - Captain Flint and Crew Recruitment

    Despite his bad reputation, Captain Flint is a friendly person (at least, friendly to animals). Now Captain Flint is searching worthy sailors to join his new crew (solely for peaceful purposes). A sailor is considered as worthy if he can solve Flint's task.

    Recently, out of blue Captain Flint has been interested in math and even defined a new class of integers. Let's define a positive integer [Math Processing Error]x as nearly prime if it can be represented as [Math Processing Error]p⋅q, where [Math Processing Error]1<p<q and [Math Processing Error]p and [Math Processing Error]q are prime numbers. For example, integers [Math Processing Error]6 and [Math Processing Error]10 are nearly primes (since [Math Processing Error]2⋅3=6 and [Math Processing Error]2⋅5=10), but integers [Math Processing Error]1, [Math Processing Error]3, [Math Processing Error]4, [Math Processing Error]16, [Math Processing Error]17 or [Math Processing Error]44 are not.

    Captain Flint guessed an integer [Math Processing Error]n and asked you: can you represent it as the sum of [Math Processing Error]different positive integers where at least [Math Processing Error]3 of them should be nearly prime.

    Uncle Bogdan easily solved the task and joined the crew. Can you do the same?

    Input

    The first line contains a single integer [Math Processing Error]t ([Math Processing Error]1≤t≤1000) — the number of test cases.

    Next [Math Processing Error]t lines contain test cases — one per line. The first and only line of each test case contains the single integer [Math Processing Error][Math Processing Error](1≤n≤2⋅105) — the number Flint guessed.

    Output

    For each test case print:

    • YES and [Math Processing Error]different positive integers such that at least [Math Processing Error]3 of them are nearly prime and their sum is equal to [Math Processing Error]n (if there are multiple answers print any of them);
    • NO if there is no way to represent [Math Processing Error]n as the sum of [Math Processing Error]different positive integers where at least [Math Processing Error]3 of them are nearly prime.

    You can print each character of YES or NO in any case.Example

    Input
    7
    7
    23
    31
    36
    44
    100
    258
    
    Output
    NO
    NO
    YES
    14 10 6 1
    YES
    5 6 10 15
    YES
    6 7 10 21
    YES
    2 10 33 55
    YES
    10 21 221 6
    题意: 定义一类正整数,能够被pq表示,其中pq(1<p<q)均为素数,称之为nearly primenearly prime 。现要求判断整数n,是否能被4个不同整数之和表示,
    且其中至少三个整数为
    nearly primenearly prime (是则,输出YES否则输出NO)
    n=31=2×7+2×5+2×3+1其中14,10,6nearly prime
    能用6,10,14,n30表示吗?注意,当n30=6or10or14时,出现了重复数字,我们可以构造出比{23,25,27,n}稍大的组合,即{23,25,35,n}

    #include <cstdio>
    using namespace std;
    int main() {
        int t; scanf("%d", &t);
        while (t--) {
            int n;
            scanf("%d", &n);
            if (n <= 30) {
                printf("NO
    ");
                continue;
            }
            int last = n - 30;
            if (last == 6 || last == 10 || last == 14) {
                printf("YES
    6 10 15 %d
    ", n - 31);
            }
            else {
                printf("YES
    6 10 14 %d
    ", n - 30);
            }
        }
        return 0;
    }
  • 相关阅读:
    node实现将打包后的文件转压缩包
    Git/SVN忽略node_modules文件
    node实现发送邮件
    node搜索文件夹下的指定内容
    node批量修改文件文本内容
    微信小程序上线发布需要做的事情
    两件事 Jquery.form 锁
    .NET MVC 提交表单出现检测到有潜在危险的Request.Form值
    第一次使用TinyMCE
    第一次使用Entity Framework 的CodeFirst
  • 原文地址:https://www.cnblogs.com/hrlsm/p/13445785.html
Copyright © 2020-2023  润新知