• POJ 1329 三角外接圆


    Circle Through Three Points
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 3169   Accepted: 1342

    Description

    Your team is to write a program that, given the Cartesian coordinates of three points on a plane, will find the equation of the circle through them all. The three points will not be on a straight line.
    The solution is to be printed as an equation of the form
    	(x - h)^2 + (y - k)^2 = r^2				(1)

    and an equation of the form
    	x^2 + y^2 + cx + dy - e = 0				(2)

    Input

    Each line of input to your program will contain the x and y coordinates of three points, in the order Ax, Ay, Bx, By, Cx, Cy. These coordinates will be real numbers separated from each other by one or more spaces.

    Output

    Your program must print the required equations on two lines using the format given in the sample below. Your computed values for h, k, r, c, d, and e in Equations 1 and 2 above are to be printed with three digits after the decimal point. Plus and minus signs in the equations should be changed as needed to avoid multiple signs before a number. Plus, minus, and equal signs must be separated from the adjacent characters by a single space on each side. No other spaces are to appear in the equations. Print a single blank line after each equation pair.

    Sample Input

    7.0 -5.0 -1.0 1.0 0.0 -6.0
    1.0 7.0 8.0 6.0 7.0 -2.0
    

    Sample Output

    (x - 3.000)^2 + (y + 2.000)^2 = 5.000^2
    x^2 + y^2 - 6.000x + 4.000y - 12.000 = 0
    
    (x - 3.921)^2 + (y - 2.447)^2 = 5.409^2
    x^2 + y^2 - 7.842x - 4.895y - 7.895 = 0
    


    给定三个点,求三角形的外接圆,题目非常easy,练一下计算几何的模板代码。输出非常恶心。

    代码:

    /* ***********************************************
    Author :rabbit
    Created Time :2014/4/19 23:46:03
    File Name :8.cpp
    ************************************************ */
    #pragma comment(linker, "/STACK:102400000,102400000")
    #include <stdio.h>
    #include <iostream>
    #include <algorithm>
    #include <sstream>
    #include <stdlib.h>
    #include <string.h>
    #include <limits.h>
    #include <string>
    #include <time.h>
    #include <math.h>
    #include <queue>
    #include <stack>
    #include <set>
    #include <map>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define eps 1e-8
    #define pi acos(-1.0)
    typedef long long ll;
    int dcmp(double x){
    	if(fabs(x)<eps)return 0;
    	return x>0?

    1:-1; } struct Point{ double x,y; Point(double _x=0,double _y=0){ x=_x;y=_y; } }; Point operator + (Point a,Point b){ return Point(a.x+b.x,a.y+b.y); } Point operator - (Point a,Point b){ return Point(a.x-b.x,a.y-b.y); } Point operator * (Point a,double p){ return Point(a.x*p,a.y*p); } Point operator / (Point a,double p){ return Point(a.x/p,a.y/p); } bool operator < (const Point &a,const Point &b){ return a.x<b.x||(a.x==b.x&&a.y<b.y); } bool operator == (const Point &a,const Point &b){ return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0; } double Dot(Point a,Point b){ return a.x*b.x+a.y*b.y; } double Length(Point a){ return sqrt(Dot(a,a)); } struct Circle{ Point c; double r; Circle(){} Circle(Point c,double r):c(c),r(r){} Point point(double a){ return Point(c.x+cos(a)*r,c.y+sin(a)*r); } }; Circle CircumscribedCircle(Point p1,Point p2,Point p3){ double Bx=p2.x-p1.x,By=p2.y-p1.y; double Cx=p3.x-p1.x,Cy=p3.y-p1.y; double D=2*(Bx*Cy-By*Cx); double cx=(Cy*(Bx*Bx+By*By)-By*(Cx*Cx+Cy*Cy))/D+p1.x; double cy=(Bx*(Cx*Cx+Cy*Cy)-Cx*(Bx*Bx+By*By))/D+p1.y; Point p=Point(cx,cy); return Circle(p,Length(p1-p)); } void output(double R, Point P0) { double C; if(P0.x>0)printf("(x - %.3lf)^2 + ",P0.x);else printf("(x + %.3lf)^2 + ",P0.x*(-1)); if(P0.y>0)printf("(y - %.3lf)^2 = %.3f^2 ",P0.y,R);else printf("(y + %.3lf)^2 = %.3f^2 ",P0.y*(-1),R); printf("x^2 + y^2 "); if(P0.x>0)printf("- %.3lfx ",P0.x*2);else printf("+ %.3lfx ",P0.x*(-2)); if(P0.y>0)printf("- %.3lfy ",P0.y*2);else printf("+ %.3lfy ",P0.y*(-2)); C = P0.x*P0.x + P0.y*P0.y - R*R; if(C>0)printf("+ %.3lf = 0 ",C);else printf("- %.3lf = 0 ",C*(-1)); } int main() { //freopen("data.in","r",stdin); //freopen("data.out","w",stdout); Point a,b,c; Circle p; while(cin>>a.x>>a.y>>b.x>>b.y>>c.x>>c.y){ p=CircumscribedCircle(a,b,c); output(p.r,p.c); puts(""); } return 0; }



  • 相关阅读:
    51nod 1574 排列转换(猜结论)
    百度之星资格赛 1005 寻找母串(分块打表+组合数计算)
    百度之星资格赛 1004 度度熊的午饭时光(01背包+最小序号和+字典序+有bug)
    百度之星资格赛 1003 度度熊与邪恶大魔王(二维dp)
    HDU 4542 小明系列故事——未知剩余系 (数论|反素数)
    51nod 1060 最复杂的数(反素数)
    eclipse hadoop环境搭建 查看HDFS文件内容
    Windows jdk安装以及版本切换
    WIN10配置MongoDB
    Oracle 11g R2 for Win10(64位)的安装步骤
  • 原文地址:https://www.cnblogs.com/hrhguanli/p/5050231.html
Copyright © 2020-2023  润新知