Description
Supermean
Time Limit: 2 second
"I have not failed. I've just found 10,000 ways that won't work." |
Do you know how to compute the mean (or average) of n numbers? Well, that's not good enough for me. I want the supermean! "What's a supermean," you ask?
I'll tell you. List the
n given numbers in non-decreasing order. Now compute the average of each pair of adjacent numbers. This will give you
Input
The first line of input gives the number of cases, N. N test cases follow. Each one starts with a line containing
n (0<n<=50000). The next line will contain the
n input numbers, each one between -1000 and 1000, in non-decreasing order.
Output
For each test case, output one line containing "Case #x:" followed by the supermean, rounded to 3 fractional digits.
Sample Input | Sample Output |
4 1 10.4 2 1.0 2.2 3 1 2 3 5 1 2 3 4 5 |
Case #1: 10.400 Case #2: 1.600 Case #3: 2.000 Case #4: 3.000 |
Problemsetter: Igor Naverniouk
题意:给出n个数,每相邻的两个数求平均数。将得到n-1个,然后再两两求平均数,依次类推直到最后一个。求这个数是多少
思路:系数的话非常easy想到是杨辉三角的系数,可是由于n大太,所以为了防止溢出我们用log来储存。每一项的通式是:∑i=0n−1C[n−1][i]∗num[i]2n−1
然后就是在推组合数的同一时候对数处理
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const int maxn = 50005; double C[maxn], num[maxn]; int main() { int t, n, cas = 1; scanf("%d", &t); while (t--) { scanf("%d", &n); for (int i = 0; i < n; i++) scanf("%lf", &num[i]); double ans = 0.0, tmp = log10(1); for (int i = 0; i < n; i++) { if (i) tmp = tmp + log10(n-i) - log10(i); if (num[i] < 0) ans -= pow(10, tmp + log10(-num[i]) - (n-1)*log10(2)); else ans += pow(10, tmp + log10(num[i]) - (n-1)*log10(2)); } printf("Case #%d: %.3lf ", cas++, ans); } return 0; }