• [欧拉] poj 2230 Watchcow


    主题链接:

    http://poj.org/problem?

    id=2230

    Watchcow
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 6055   Accepted: 2610   Special Judge

    Description

    Bessie's been appointed the new watch-cow for the farm. Every night, it's her job to walk across the farm and make sure that no evildoers are doing any evil. She begins at the barn, makes her patrol, and then returns to the barn when she's done. 

    If she were a more observant cow, she might be able to just walk each of M (1 <= M <= 50,000) bidirectional trails numbered 1..M between N (2 <= N <= 10,000) fields numbered 1..N on the farm once and be confident that she's seen everything she needs to see. But since she isn't, she wants to make sure she walks down each trail exactly twice. It's also important that her two trips along each trail be in opposite directions, so that she doesn't miss the same thing twice. 

    A pair of fields might be connected by more than one trail. Find a path that Bessie can follow which will meet her requirements. Such a path is guaranteed to exist.

    Input

    * Line 1: Two integers, N and M. 

    * Lines 2..M+1: Two integers denoting a pair of fields connected by a path.

    Output

    * Lines 1..2M+1: A list of fields she passes through, one per line, beginning and ending with the barn at field 1. If more than one solution is possible, output any solution.

    Sample Input

    4 5
    1 2
    1 4
    2 3
    2 4
    3 4

    Sample Output

    1
    2
    3
    4
    2
    1
    4
    3
    2
    4
    1

    Hint

    OUTPUT DETAILS: 

    Bessie starts at 1 (barn), goes to 2, then 3, etc...

    Source

    [Submit]   [Go Back]   [Status]   [Discuss]

    题目意思:

    给一幅连通无向图。求如何从点1出发,最后回到1,且每条边两个方向各走一次。

    解题思路:

    欧拉回路

    将一条边抽象成两条有向边就可以。

    代码:

    //#include<CSpreadSheet.h>
    
    #include<iostream>
    #include<cmath>
    #include<cstdio>
    #include<sstream>
    #include<cstdlib>
    #include<string>
    #include<string.h>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    #include<map>
    #include<set>
    #include<stack>
    #include<list>
    #include<queue>
    #include<ctime>
    #include<bitset>
    #include<cmath>
    #define eps 1e-6
    #define INF 0x3f3f3f3f
    #define PI acos(-1.0)
    #define ll __int64
    #define LL long long
    #define lson l,m,(rt<<1)
    #define rson m+1,r,(rt<<1)|1
    #define M 1000000007
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    using namespace std;
    
    #define Maxn 11000
    
    int n,m;
    struct Node
    {
        int to,id;
        Node(int a,int b)
        {
            to=a,id=b;
        }
    };
    vector<vector<Node> >myv;
    bool vis[Maxn*10];
    vector<int>ans;
    
    void dfs(int cur)
    {
        for(int i=0;i<myv[cur].size();i++)
        {
            Node ne=myv[cur][i];
            if(vis[ne.id])
                continue;
            vis[ne.id]=true;
            dfs(ne.to);
        }
        ans.push_back(cur);
    
    }
    int main()
    {
        //freopen("in.txt","r",stdin);
       //freopen("out.txt","w",stdout);
       while(~scanf("%d%d",&n,&m))
       {
           myv.clear();myv.resize(n+1);
           for(int i=1;i<=m;i++)
           {
               int a,b;
               scanf("%d%d",&a,&b);
               myv[a].push_back(Node(b,i*2-1));
               myv[b].push_back(Node(a,i*2));
           }
           memset(vis,false,sizeof(vis));
           ans.clear();
           dfs(1);
           for(int i=ans.size()-1;i>=0;i--)
                printf("%d
    ",ans[i]);
    
       }
        return 0;
    }
    
    


  • 相关阅读:
    CF1174D Ehab and the Expected XOR Problem
    CF1083B The Fair Nut and Strings
    CF1088D Ehab and another another xor problem
    CF1168A Increasing by Modulo
    CF1166C A Tale of Two Lands
    CF1142A The Beatles
    CF1105D Kilani and the Game
    【uva11248】网络扩容
    【sam复习】用sam实现后缀排序
    【Educational Codeforces Round 19】
  • 原文地址:https://www.cnblogs.com/hrhguanli/p/5033823.html
Copyright © 2020-2023  润新知