Flow construction
题目:
给出N个节点M条水管,要求在满足上下界的情况下。满足起点最小的流量。
算法:
这是最小流????不知道。仅仅知道用求解上下界最大流的方法就过了。
做这题收获了非常多东西。
知道了同一点的flow是真实的流量值,尽管曾经在书上或论文中看到过,只是印象不深,可是经过这题深刻的懂了。就是这题输出的时候有点麻烦。
。。要记录每次的路径。然后用我刚才说的那个。同一个点的flow是真实的流量值!!!!
#include <iostream> #include <algorithm> #include <vector> #include <queue> #include <cstdio> #include <cstring> using namespace std; const int INF = 1 << 28; const int MAXN = 200 + 10; /////////////////////////////////////// //上下界最小流 struct Edge{ int from,to,cap,flow,cost; Edge(){}; Edge(int _from,int _to,int _cap,int _flow) :from(_from),to(_to),cap(_cap),flow(_flow){}; }; vector<Edge> edges; vector<int> G[MAXN]; int cur[MAXN],d[MAXN]; bool vst[MAXN]; int N,M,src,sink; //////////////////////////////// //上下界网络流 int sum; int in[MAXN],id[MAXN*MAXN],low[MAXN*MAXN]; void init(){ src = N + 2; sink = src + 1; for(int i = 0;i <= sink;++i) G[i].clear(); edges.clear(); } void addEdge(int from,int to,int cap){ edges.push_back(Edge(from,to,cap,0)); edges.push_back(Edge(to,from,0,0)); int sz = edges.size(); G[from].push_back(sz - 2); G[to].push_back(sz - 1); } bool BFS(){ memset(vst,0,sizeof(vst)); queue<int> Q; vst[src] = 1; d[src] = 0; Q.push(src); while(!Q.empty()){ int x = Q.front(); Q.pop(); for(int i = 0;i < (int)G[x].size();++i){ Edge& e = edges[G[x][i]]; if(!vst[e.to] && e.cap > e.flow){ vst[e.to] = 1; d[e.to] = d[x] + 1; Q.push(e.to); } } } return vst[sink]; } int DFS(int x,int a){ if(x == sink||a == 0) return a; int flow = 0,f; for(int& i = cur[x];i < (int)G[x].size();++i){ Edge& e = edges[G[x][i]]; if(d[e.to] == d[x] + 1&&(f = DFS(e.to,min(a,e.cap - e.flow))) > 0){ e.flow += f; edges[G[x][i]^1].flow -= f; flow += f; a -= f; if(a == 0) break; } } return flow; } int maxFlow(){ int flow = 0; while(BFS()){ memset(cur,0,sizeof(cur)); flow += DFS(src,INF); } return flow; } void solve(){ for(int i = 1;i <= N;++i){ if(in[i] > 0){ sum += in[i]; addEdge(src,i,in[i]); } else { addEdge(i,sink,-in[i]); } } sum -= maxFlow(); addEdge(N,1,INF); //是图变成无源无汇 int flow = maxFlow(); if(flow != sum){ puts("Impossible"); return; } int sz = edges.size(); //N --> 1 的容量 printf("%d ",edges[sz - 2].flow); //反向弧的流量。即为正向真实流的流量!!! for(int i = 0;i < M;++i){ if(low[i] > 0) printf("%d%c",low[i],i == M - 1 ? ' ':' '); else printf("%d%c",edges[id[i]].flow,i == M - 1 ? ' ':' '); } } int main() { while(scanf("%d%d",&N,&M) == 2){ init(); int x,y,c,d; sum = 0; memset(in,0,sizeof(in)); for(int i = 0; i < M;++i){ scanf("%d%d%d%d",&x,&y,&c,&d); if(d == 0){ //流量没限制 id[i] = edges.size(); addEdge(x,y,c); } else { //sum += c; in[x] -= c; in[y] += c; low[i] = c; // addEdge(src,y,c); //id[i] = edges.size(); //反向弧的流量,即为正向真实流的流量!!! //addEdge(x,sink,c); } } solve(); } return 0; }
版权声明:本文博主原创文章,博客,未经同意不得转载。