SparkContext这是发达国家Spark入学申请,它负责的相互作用和整个集群,它涉及到创建RDD。accumulators and broadcast variables。理解力Spark架构,我们需要从入口开始。下图是图的官方网站。
DriverProgram就是用户提交的程序,这里边定义了SparkContext的实例。
SparkContext定义在core/src/main/scala/org/apache/spark/SparkContext.scala。
Spark默认的构造函数接受org.apache.spark.SparkConf, 通过这个參数我们能够自己定义本次提交的參数,这个參数会覆盖系统的默认配置。
先上一张与SparkContext相关的类图:
以下是SparkContext很重要的数据成员的定义:
// Create and start the scheduler private[spark] var taskScheduler = SparkContext.createTaskScheduler(this, master) private val heartbeatReceiver = env.actorSystem.actorOf( Props(new HeartbeatReceiver(taskScheduler)), "HeartbeatReceiver") @volatile private[spark] var dagScheduler: DAGScheduler = _ try { dagScheduler = new DAGScheduler(this) } catch { case e: Exception => throw new SparkException("DAGScheduler cannot be initialized due to %s".format(e.getMessage)) } // start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's // constructor taskScheduler.start()
通过createTaskScheduler,我们能够获得不同资源管理类型或者部署类型的调度器。
看一下如今支持的部署方法:
/** Creates a task scheduler based on a given master URL. Extracted for testing. */ private def createTaskScheduler(sc: SparkContext, master: String): TaskScheduler = { // Regular expression used for local[N] and local[*] master formats val LOCAL_N_REGEX = """local[([0-9]+|*)]""".r // Regular expression for local[N, maxRetries], used in tests with failing tasks val LOCAL_N_FAILURES_REGEX = """local[([0-9]+|*)s*,s*([0-9]+)]""".r // Regular expression for simulating a Spark cluster of [N, cores, memory] locally val LOCAL_CLUSTER_REGEX = """local-cluster[s*([0-9]+)s*,s*([0-9]+)s*,s*([0-9]+)s*]""".r // Regular expression for connecting to Spark deploy clusters val SPARK_REGEX = """spark://(.*)""".r // Regular expression for connection to Mesos cluster by mesos:// or zk:// url val MESOS_REGEX = """(mesos|zk)://.*""".r // Regular expression for connection to Simr cluster val SIMR_REGEX = """simr://(.*)""".r // When running locally, don't try to re-execute tasks on failure. val MAX_LOCAL_TASK_FAILURES = 1 master match { case "local" => val scheduler = new TaskSchedulerImpl(sc, MAX_LOCAL_TASK_FAILURES, isLocal = true) val backend = new LocalBackend(scheduler, 1) scheduler.initialize(backend) scheduler case LOCAL_N_REGEX(threads) => def localCpuCount = Runtime.getRuntime.availableProcessors() // local[*] estimates the number of cores on the machine; local[N] uses exactly N threads. val threadCount = if (threads == "*") localCpuCount else threads.toInt val scheduler = new TaskSchedulerImpl(sc, MAX_LOCAL_TASK_FAILURES, isLocal = true) val backend = new LocalBackend(scheduler, threadCount) scheduler.initialize(backend) scheduler case LOCAL_N_FAILURES_REGEX(threads, maxFailures) => def localCpuCount = Runtime.getRuntime.availableProcessors() // local[*, M] means the number of cores on the computer with M failures // local[N, M] means exactly N threads with M failures val threadCount = if (threads == "*") localCpuCount else threads.toInt val scheduler = new TaskSchedulerImpl(sc, maxFailures.toInt, isLocal = true) val backend = new LocalBackend(scheduler, threadCount) scheduler.initialize(backend) scheduler case SPARK_REGEX(sparkUrl) => val scheduler = new TaskSchedulerImpl(sc) val masterUrls = sparkUrl.split(",").map("spark://" + _) val backend = new SparkDeploySchedulerBackend(scheduler, sc, masterUrls) scheduler.initialize(backend) scheduler case LOCAL_CLUSTER_REGEX(numSlaves, coresPerSlave, memoryPerSlave) => // Check to make sure memory requested <= memoryPerSlave. Otherwise Spark will just hang. val memoryPerSlaveInt = memoryPerSlave.toInt if (sc.executorMemory > memoryPerSlaveInt) { throw new SparkException( "Asked to launch cluster with %d MB RAM / worker but requested %d MB/worker".format( memoryPerSlaveInt, sc.executorMemory)) } val scheduler = new TaskSchedulerImpl(sc) val localCluster = new LocalSparkCluster( numSlaves.toInt, coresPerSlave.toInt, memoryPerSlaveInt) val masterUrls = localCluster.start() val backend = new SparkDeploySchedulerBackend(scheduler, sc, masterUrls) scheduler.initialize(backend) backend.shutdownCallback = (backend: SparkDeploySchedulerBackend) => { localCluster.stop() } scheduler case "yarn-standalone" | "yarn-cluster" => if (master == "yarn-standalone") { logWarning( ""yarn-standalone" is deprecated as of Spark 1.0. Use "yarn-cluster" instead.") } val scheduler = try { val clazz = Class.forName("org.apache.spark.scheduler.cluster.YarnClusterScheduler") val cons = clazz.getConstructor(classOf[SparkContext]) cons.newInstance(sc).asInstanceOf[TaskSchedulerImpl] } catch { // TODO: Enumerate the exact reasons why it can fail // But irrespective of it, it means we cannot proceed ! case e: Exception => { throw new SparkException("YARN mode not available ?", e) } } val backend = try { val clazz = Class.forName("org.apache.spark.scheduler.cluster.YarnClusterSchedulerBackend") val cons = clazz.getConstructor(classOf[TaskSchedulerImpl], classOf[SparkContext]) cons.newInstance(scheduler, sc).asInstanceOf[CoarseGrainedSchedulerBackend] } catch { case e: Exception => { throw new SparkException("YARN mode not available ?", e) } } scheduler.initialize(backend) scheduler case "yarn-client" => val scheduler = try { val clazz = Class.forName("org.apache.spark.scheduler.cluster.YarnClientClusterScheduler") val cons = clazz.getConstructor(classOf[SparkContext]) cons.newInstance(sc).asInstanceOf[TaskSchedulerImpl] } catch { case e: Exception => { throw new SparkException("YARN mode not available ?", e) } } val backend = try { val clazz = Class.forName("org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend") val cons = clazz.getConstructor(classOf[TaskSchedulerImpl], classOf[SparkContext]) cons.newInstance(scheduler, sc).asInstanceOf[CoarseGrainedSchedulerBackend] } catch { case e: Exception => { throw new SparkException("YARN mode not available ?", e) } } scheduler.initialize(backend) scheduler case mesosUrl @ MESOS_REGEX(_) => MesosNativeLibrary.load() val scheduler = new TaskSchedulerImpl(sc) val coarseGrained = sc.conf.getBoolean("spark.mesos.coarse", false) val url = mesosUrl.stripPrefix("mesos://") // strip scheme from raw Mesos URLs val backend = if (coarseGrained) { new CoarseMesosSchedulerBackend(scheduler, sc, url) } else { new MesosSchedulerBackend(scheduler, sc, url) } scheduler.initialize(backend) scheduler case SIMR_REGEX(simrUrl) => val scheduler = new TaskSchedulerImpl(sc) val backend = new SimrSchedulerBackend(scheduler, sc, simrUrl) scheduler.initialize(backend) scheduler case _ => throw new SparkException("Could not parse Master URL: '" + master + "'") } } }
基本的逻辑从line 20開始。主要通过传入的Master URL来生成Scheduler 和 Scheduler backend。对于常见的Standalone的部署方式,我们看一下是生成的Scheduler 和 Scheduler backend:
case SPARK_REGEX(sparkUrl) => val scheduler = new TaskSchedulerImpl(sc) val masterUrls = sparkUrl.split(",").map("spark://" + _) val backend = new SparkDeploySchedulerBackend(scheduler, sc, masterUrls) scheduler.initialize(backend) scheduler
org.apache.spark.scheduler.TaskSchedulerImpl通过一个SchedulerBackend管理了全部的cluster的调度;它主要实现了通用的逻辑。对于系统刚启动时,须要理解两个接口,一个是initialize,一个是start。
这个也是在SparkContext初始化时调用的:
def initialize(backend: SchedulerBackend) { this.backend = backend // temporarily set rootPool name to empty rootPool = new Pool("", schedulingMode, 0, 0) schedulableBuilder = { schedulingMode match { case SchedulingMode.FIFO => new FIFOSchedulableBuilder(rootPool) case SchedulingMode.FAIR => new FairSchedulableBuilder(rootPool, conf) } } schedulableBuilder.buildPools() }
由此可见,初始化主要是SchedulerBackend的初始化。它主要时通过集群的配置来获得调度模式,如今支持的调度模式是FIFO和公平调度,默认的是FIFO。
// default scheduler is FIFO private val schedulingModeConf = conf.get("spark.scheduler.mode", "FIFO") val schedulingMode: SchedulingMode = try { SchedulingMode.withName(schedulingModeConf.toUpperCase) } catch { case e: java.util.NoSuchElementException => throw new SparkException(s"Unrecognized spark.scheduler.mode: $schedulingModeConf") }
start的实现例如以下:
override def start() { backend.start() if (!isLocal && conf.getBoolean("spark.speculation", false)) { logInfo("Starting speculative execution thread") import sc.env.actorSystem.dispatcher sc.env.actorSystem.scheduler.schedule(SPECULATION_INTERVAL milliseconds, SPECULATION_INTERVAL milliseconds) { Utils.tryOrExit { checkSpeculatableTasks() } } } }
主要是backend的启动。对于非本地模式。而且设置了spark.speculation为true,那么对于指定时间未返回的task将会启动另外的task来运行。事实上对于一般的应用,这个的确可能会降低任务的运行时间,可是也浪费了集群的计算资源。
因此对于离线应用来说,这个设置是不推荐的。
org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend是Standalone模式的SchedulerBackend。它的定义例如以下:
private[spark] class SparkDeploySchedulerBackend( scheduler: TaskSchedulerImpl, sc: SparkContext, masters: Array[String]) extends CoarseGrainedSchedulerBackend(scheduler, sc.env.actorSystem) with AppClientListener with Logging {
看一下它的start:
override def start() { super.start() // The endpoint for executors to talk to us val driverUrl = "akka.tcp://%s@%s:%s/user/%s".format( SparkEnv.driverActorSystemName, conf.get("spark.driver.host"), conf.get("spark.driver.port"), CoarseGrainedSchedulerBackend.ACTOR_NAME) val args = Seq(driverUrl, "{{EXECUTOR_ID}}", "{{HOSTNAME}}", "{{CORES}}", "{{WORKER_URL}}") val extraJavaOpts = sc.conf.getOption("spark.executor.extraJavaOptions") .map(Utils.splitCommandString).getOrElse(Seq.empty) val classPathEntries = sc.conf.getOption("spark.executor.extraClassPath").toSeq.flatMap { cp => cp.split(java.io.File.pathSeparator) } val libraryPathEntries = sc.conf.getOption("spark.executor.extraLibraryPath").toSeq.flatMap { cp => cp.split(java.io.File.pathSeparator) } // Start executors with a few necessary configs for registering with the scheduler val sparkJavaOpts = Utils.sparkJavaOpts(conf, SparkConf.isExecutorStartupConf) val javaOpts = sparkJavaOpts ++ extraJavaOpts val command = Command("org.apache.spark.executor.CoarseGrainedExecutorBackend", args, sc.executorEnvs, classPathEntries, libraryPathEntries, javaOpts) val appDesc = new ApplicationDescription(sc.appName, maxCores, sc.executorMemory, command, sc.ui.appUIAddress, sc.eventLogger.map(_.logDir)) client = new AppClient(sc.env.actorSystem, masters, appDesc, this, conf) client.start() waitForRegistration() }
接下来,我们将对TaskScheduler。SchedulerBackend和DAG Scheduler进行具体解释。来逐步揭开他们的神奇面纱。
版权声明:本文博主原创文章,博客,未经同意不得转载。