• POJ 3304 Segments(计算几何)


    意甲冠军:给出的一些段的。问:能否找到一条直线,通过所有的行

    思维:假设一条直线的存在,所以必须有该过两点的线,然后列举两点,然后推断是否存在与所有的行的交点可以是

    代码:

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    using namespace std;
    
    struct Point {
        double x, y;
        Point() {}
        Point(double x, double y) {
            this->x = x;
            this->y = y;
        }
        void read() {
            scanf("%lf%lf", &x, &y);
        }
    };
    
    typedef Point Vector;
    
    Vector operator + (Vector A, Vector B) {
        return Vector(A.x + B.x, A.y + B.y);
    }
    
    Vector operator - (Vector A, Vector B) {
        return Vector(A.x - B.x, A.y - B.y);
    }
    
    Vector operator * (Vector A, double p) {
        return Vector(A.x * p, A.y * p);
    }
    
    Vector operator / (Vector A, double p) {
        return Vector(A.x / p, A.y / p);
    }
    
    bool operator < (const Point& a, const Point& b) {
        return a.x < b.x || (a.x == b.x && a.y < b.y);
    }
    
    const double eps = 1e-8;
    
    int dcmp(double x) {
        if (fabs(x) < eps) return 0;
        else return x < 0 ? -1 : 1;
    }
    
    bool operator == (const Point& a, const Point& b) {
        return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
    }
    
    double Dot(Vector A, Vector B) {return A.x * B.x + A.y * B.y;} //点积
    double Length(Vector A) {return sqrt(Dot(A, A));} //向量的模
    double Angle(Vector A, Vector B) {return acos(Dot(A, B) / Length(A) / Length(B));} //向量夹角
    double Cross(Vector A, Vector B) {return A.x * B.y - A.y * B.x;} //叉积
    double Area2(Point A, Point B, Point C) {return Cross(B - A, C - A);} //有向面积
    
    //向量旋转
    Vector Rotate(Vector A, double rad) {
        return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
    }
    
    //推断3点共线
    bool LineCoincide(Point p1, Point p2, Point p3) {
        return dcmp(Cross(p2 - p1, p3 - p1)) == 0;
    }
    
    //推断向量平行
    bool LineParallel(Vector v, Vector w) {
        return Cross(v, w) == 0;
    }
    
    //推断向量垂直
    bool LineVertical(Vector v, Vector w) {
        return Dot(v, w) == 0;
    }
    
    //计算两直线交点,平行,重合要先推断
    Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
        Vector u = P - Q;
        double t = Cross(w, u) / Cross(v, w);
        return P + v * t;
    }
    
    //点到直线距离
    double DistanceToLine(Point P, Point A, Point B) {
        Vector v1 = B - A, v2 = P - A;
        return fabs(Cross(v1, v2)) / Length(v1);
    }
    
    //点到线段距离
    double DistanceToSegment(Point P, Point A, Point B) {
        if (A == B) return Length(P - A);
        Vector v1 = B - A, v2 = P - A, v3 = P - B;
        if (dcmp(Dot(v1, v2)) < 0) return Length(v2);
        else if (dcmp(Dot(v1, v3)) > 0) return Length(v3);
        else return fabs(Cross(v1, v2)) / Length(v1);
    }
    
    //点在直线上的投影点
    Point GetLineProjection(Point P, Point A, Point B) {
        Vector v = B - A;
        return A + v * (Dot(v, P - A) / Dot(v, v));
    }
    
    //线段相交判定(规范相交)
    bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) {
        double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
                c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
        //dcmp(c1) * dcmp(c2) == 0 || dcmp(c3) * dcmp(c4) == 0为不规范相交
        return dcmp(c1) * dcmp(c2) <= 0;// && dcmp(c3) * dcmp(c4) <= 0;
    }
    
    //推断点在线段上, 不包括端点
    bool OnSegment(Point p, Point a1, Point a2) {
        return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
    }
    
    //n边形的面积
    double PolygonArea(Point *p, int n) {
        double area = 0;
        for (int i = 1; i < n - 1; i++)
            area += Cross(p[i] - p[0], p[i + 1] - p[0]);
        return area / 2;
    }
    
    const int N = 105;
    
    int t, n;
    
    struct Line {
        Point a, b;
        void read() {
            a.read();
            b.read();
        }
    } line[N];
    
    bool judge(Point a, Point b) {
        if (dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0) return false;
        for (int i = 0; i < n; i++)
            if (!SegmentProperIntersection(a, b, line[i].a, line[i].b)) return false;
        return true;
    }
    
    bool gao() {
        for (int i = 0; i < n; i++) {
            if (judge(line[i].a, line[i].b)) return true;
            for (int j = 0; j < i; j++) {
                if (judge(line[i].a, line[j].a)) return true;
                if (judge(line[i].a, line[j].b)) return true;
                if (judge(line[i].b, line[j].a)) return true;
                if (judge(line[i].b, line[j].b)) return true;
            }
        }
        return false;
    }
    
    int main() {
        scanf("%d", &t);
        while (t--) {
            scanf("%d", &n);
            for (int i = 0; i < n; i++)
                line[i].read();
            if (gao()) printf("Yes!
    ");
            else printf("No!
    ");
        }
        return 0;
    }
    


    版权声明:本文博客原创文章,博客,未经同意,不得转载。

  • 相关阅读:
    RavenScheme简介
    我终于理解了LISP『代码即数据|数据即代码』的含义
    汉编随想(一)
    SICP的一些练习题
    linux下Script小计
    vscode小计
    软硬连接区别
    find过滤大小执行操作
    pyqt5和qt designer安装
    pyenv和virtualenv结合使用管理多python环境
  • 原文地址:https://www.cnblogs.com/hrhguanli/p/4741881.html
Copyright © 2020-2023  润新知