意甲冠军:给出的一些段的。问:能否找到一条直线,通过所有的行
思维:假设一条直线的存在,所以必须有该过两点的线,然后列举两点,然后推断是否存在与所有的行的交点可以是
代码:
#include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; struct Point { double x, y; Point() {} Point(double x, double y) { this->x = x; this->y = y; } void read() { scanf("%lf%lf", &x, &y); } }; typedef Point Vector; Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); } Vector operator * (Vector A, double p) { return Vector(A.x * p, A.y * p); } Vector operator / (Vector A, double p) { return Vector(A.x / p, A.y / p); } bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); } const double eps = 1e-8; int dcmp(double x) { if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point& b) { return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } double Dot(Vector A, Vector B) {return A.x * B.x + A.y * B.y;} //点积 double Length(Vector A) {return sqrt(Dot(A, A));} //向量的模 double Angle(Vector A, Vector B) {return acos(Dot(A, B) / Length(A) / Length(B));} //向量夹角 double Cross(Vector A, Vector B) {return A.x * B.y - A.y * B.x;} //叉积 double Area2(Point A, Point B, Point C) {return Cross(B - A, C - A);} //有向面积 //向量旋转 Vector Rotate(Vector A, double rad) { return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad)); } //推断3点共线 bool LineCoincide(Point p1, Point p2, Point p3) { return dcmp(Cross(p2 - p1, p3 - p1)) == 0; } //推断向量平行 bool LineParallel(Vector v, Vector w) { return Cross(v, w) == 0; } //推断向量垂直 bool LineVertical(Vector v, Vector w) { return Dot(v, w) == 0; } //计算两直线交点,平行,重合要先推断 Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) { Vector u = P - Q; double t = Cross(w, u) / Cross(v, w); return P + v * t; } //点到直线距离 double DistanceToLine(Point P, Point A, Point B) { Vector v1 = B - A, v2 = P - A; return fabs(Cross(v1, v2)) / Length(v1); } //点到线段距离 double DistanceToSegment(Point P, Point A, Point B) { if (A == B) return Length(P - A); Vector v1 = B - A, v2 = P - A, v3 = P - B; if (dcmp(Dot(v1, v2)) < 0) return Length(v2); else if (dcmp(Dot(v1, v3)) > 0) return Length(v3); else return fabs(Cross(v1, v2)) / Length(v1); } //点在直线上的投影点 Point GetLineProjection(Point P, Point A, Point B) { Vector v = B - A; return A + v * (Dot(v, P - A) / Dot(v, v)); } //线段相交判定(规范相交) bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) { double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1), c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1); //dcmp(c1) * dcmp(c2) == 0 || dcmp(c3) * dcmp(c4) == 0为不规范相交 return dcmp(c1) * dcmp(c2) <= 0;// && dcmp(c3) * dcmp(c4) <= 0; } //推断点在线段上, 不包括端点 bool OnSegment(Point p, Point a1, Point a2) { return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0; } //n边形的面积 double PolygonArea(Point *p, int n) { double area = 0; for (int i = 1; i < n - 1; i++) area += Cross(p[i] - p[0], p[i + 1] - p[0]); return area / 2; } const int N = 105; int t, n; struct Line { Point a, b; void read() { a.read(); b.read(); } } line[N]; bool judge(Point a, Point b) { if (dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0) return false; for (int i = 0; i < n; i++) if (!SegmentProperIntersection(a, b, line[i].a, line[i].b)) return false; return true; } bool gao() { for (int i = 0; i < n; i++) { if (judge(line[i].a, line[i].b)) return true; for (int j = 0; j < i; j++) { if (judge(line[i].a, line[j].a)) return true; if (judge(line[i].a, line[j].b)) return true; if (judge(line[i].b, line[j].a)) return true; if (judge(line[i].b, line[j].b)) return true; } } return false; } int main() { scanf("%d", &t); while (t--) { scanf("%d", &n); for (int i = 0; i < n; i++) line[i].read(); if (gao()) printf("Yes! "); else printf("No! "); } return 0; }
版权声明:本文博客原创文章,博客,未经同意,不得转载。