• SVM算法实现(一)


    关键字(keywords):SVM 支持向量机 SMO算法 实现 机器学习    

     

          假设对SVM原理不是非常懂的,能够先看一下入门的视频,对帮助理解非常实用的,然后再深入一点能够看看这几篇入门文章,作者写得挺具体,看完以后SVM的基础就了解得差点儿相同了,再然后买本《支持向量机导论》作者是Nello Cristianini 和 John Shawe-Taylor,电子工业出版社的。然后把书本后面的那个SMO算法实现就基本上弄懂了SVM是怎么一回事,最后再编写一个SVM库出来,比方说像libsvm等工具使用,呵呵,差点儿相同就这样。这些是我学习SVM的整个过程,也算是经验吧。

          以下是SVM的简化版SMO算法,我将结合Java代码来解释一下整个SVM的学习训练过程,即所谓的train训练过程。那么什么是SMO算法呢?

     SMO算法的目的无非是找出一个函数f(x),这个函数能让我们把输入的数据x进行分类。既然是分类肯定须要一个评判的标准,比方分出来有两种情况A和B,那么怎么样才干说x是属于A类的,或不是B类的呢?就是须要有个边界,就好像两个国家一样有边界,假设边界越明显,则就越easy区分,因此,我们的目标是最大化边界的宽度,使得很easy的区分是A类还是B类。

     在SVM中,要最大化边界则须要最小化这个数值:

     

    w:是參量,值越大边界越明显
    C代表惩处系数,即假设某个x是属于某一类,可是它偏离了该类,跑到边界上后者其它类的地方去了,C越大表明越不想放弃这个点,边界就会缩小
    代表:松散变量
    但问题似乎还不好解,又由于SVM是一个凸二次规划问题,凸二次规划问题有最优解,于是问题转换成下列形式(KKT条件):

     …………(1)

    这里的ai是拉格朗日乘子(问题通过拉格朗日乘法数来求解)
    对于(a)的情况,表明ai是正常分类,在边界内部(我们知道正确分类的点yi*f(xi)>=0)
    对于(b)的情况,表明了ai是支持向量,在边界上
    对于(c)的情况,表明了ai是在两条边界之间
    而最优解须要满足KKT条件,即满足(a)(b)(c)条件都满足
    下面几种情况出现将会出现不满足:

    yiui<=1可是ai<C则是不满足的,而原本ai=C
    yiui>=1可是ai>0则是不满足的而原本ai=0
    yiui=1可是ai=0或者ai=C则表明不满足的,而原本应该是0<ai<C
    所以要找出不满足KKT的这些ai,并更新这些ai,但这些ai又受到另外一个约束,即

     

    因此,我们通过还有一个方法,即同一时候更新ai和aj,满足下面等式

     

    就能保证和为0的约束。

    利用yiai+yjaj=常数,消去ai,可得到一个关于单变量aj的一个凸二次规划问题,不考虑其约束0<=aj<=C,能够得其解为:

     

     ………………………………………(2)

    这里………………(3)

    表示旧值,然后考虑约束0<=aj<=C可得到a的解析解为:

    …………(4)

    对于

    那么怎样求得ai和aj呢?

    对于ai,即第一个乘子,能够通过刚刚说的那几种不满足KKT的条件来找,第二个乘子aj能够找满足条件 

     

    …………………………………………………………………………(5)

    b的更新:

    在满足条件:下更新b。……………(6)

     

    最后更新全部ai,y和b,这样模型就出来了,然后通过函数:

     ……………………………………………………(7)

    输入是x,是一个数组,组中每个值表示一个特征。

    输出是A类还是B类。(正类还是负类)

    下面是基本的代码段:

     

    执行后的结果还算能够吧,測试数据主要是用了libsvm的heart_scale的数据。

    预測的正确率达到73%以上。

    假设我把核函数从线性的改为基于RBF将会更好点。

    最后,说到SVM算法实现包,应该有非常多,包含svm light,libsvm,有matlab本身自带的svm工具包等。

    另外,完整的代码,我将上传到CSDN下载地址上提供下载。

    点击这里下载

    如理解有误敬请指正!谢谢!

    我的邮箱:chen-hongqin@163.com

    我的其它博客:

    百度:http://hi.baidu.com/futrueboy/home

    javaeye:http://futrueboy.javaeye.com/

    CSDN: http://blog.csdn.net/techq

  • 相关阅读:
    自定义指令directive
    angular中的表单验证
    ng-init,ng-controller,ng-model
    Redis执行lua脚本,key不存在的返回值
    消息队列对比
    数据库设计范式
    网络IO模型
    .NET 线程、线程池
    异步和多线程
    Memcache知识点
  • 原文地址:https://www.cnblogs.com/hrhguanli/p/4468543.html
Copyright © 2020-2023  润新知