题目连接
- 题意:
给n*m的0/1矩阵,q次操作,每次有两种:1)将x,y位置值翻转 2)计算以(x,y)为边界的矩形的面积最大值
(1 ≤ n, m, q ≤ 1000)
- 分析:
考虑以(x,y)为下边界的情况,h=(x,y)上边最多的连续1的个数。那么递减的枚举,对于当前hx,仅仅须要看两側能到达的最远距离,使得h(x,ty)不大于h就可以。之后的枚举得到的两側距离大于等于之前的,所以继续之前的两側距离继续枚举就可以。
const int maxn = 1100;
int n, m, q;
int ipt[maxn][maxn];
int up[maxn][maxn], dwn[maxn][maxn], lft[maxn][maxn], rht[maxn][maxn];
int len[maxn];
void updaterow(int r)
{
FE(j, 1, m)
lft[r][j] = (ipt[r][j] == 1 ? lft[r][j - 1] + 1 : 0);
FED(j, m, 1)
rht[r][j] = (ipt[r][j] == 1 ? rht[r][j + 1] + 1 : 0);
}
void updatecol(int c)
{
FE(i, 1, n)
up[i][c] = (ipt[i][c] == 1 ? up[i - 1][c] + 1 : 0);
FED(i, n, 1)
dwn[i][c] = (ipt[i][c] == 1 ? dwn[i + 1][c] + 1 : 0);
}
int maxarea(int s, int len[], int thes)
{
int l = s, r = s, ret = 0;
FED(i, len[s], 1)
{
while (l >= 1 && len[l] >= i)
l--;
while (r <= thes && len[r] >= i)
r++;
ret = max(ret, i * (r - l - 1));
}
return ret;
}
int main()
{
while (~RIII(n, m, q))
{
FE(i, 1, n) FE(j, 1, m)
RI(ipt[i][j]);
FE(i, 1, n)
updaterow(i);
FE(j, 1, m)
updatecol(j);
REP(kase, q)
{
int op, x, y;
RIII(op, x, y);
if (op == 1)
{
ipt[x][y] ^= 1;
updatecol(y);
updaterow(x);
}
else
{
int ans = max(maxarea(y, up[x], m), maxarea(y, dwn[x], m));
FE(i, 1, n)
len[i] = lft[i][y];
ans = max(ans, maxarea(x, len, n));
FE(i, 1, n)
len[i] = rht[i][y];
ans = max(ans, maxarea(x, len, n));
WI(ans);
}
}
}
return 0;
}