• 图像处理之霍夫变换(直线检測算法)


    图像处理之霍夫变换(直线检測算法)

    霍夫变换是图像变换中的经典手段之中的一个,主要用来从图像中分离出具有某种同样特征的几何

    形状(如,直线,圆等)。霍夫变换寻找直线与圆的方法相比与其他方法能够更好的降低噪

    声干扰。经典的霍夫变换经常使用来检測直线,圆,椭圆等。

    霍夫变换算法思想:

    以直线检測为例,每一个像素坐标点经过变换都变成都直线特质有贡献的统一度量,一个简单

    的样例例如以下:一条直线在图像中是一系列离散点的集合,通过一个直线的离散极坐标公式,

    能够表达出直线的离散点几何等式例如以下:

    X *cos(theta) + y * sin(theta)  = r 当中角度theta指r与X轴之间的夹角,r为到直线几何垂

    直距离。不论什么在直线上点,x, y都能够表达,当中 r, theta是常量。该公式图形表演示样例如以下:

    然而在实现的图像处理领域,图像的像素坐标P(x, y)是已知的,而r, theta则是我们要寻找

    的变量。假设我们能绘制每一个(r, theta)值依据像素点坐标P(x, y)值的话,那么就从图像笛卡

    尔坐标系统转换到极坐标霍夫空间系统,这样的从点到曲线的变换称为直线的霍夫变换。变换

    通过量化霍夫參数空间为有限个值间隔等分或者累加格子。当霍夫变换算法開始,每一个像素

    坐标点P(x, y)被转换到(r, theta)的曲线点上面,累加到相应的格子数据点,当一个波峰出现

    时候,说明有直线存在。相同的原理,我们能够用来检測圆,仅仅是对于圆的參数方程变为如

    下等式:

    (x –a ) ^2 + (y-b) ^ 2 = r^2当中(a, b)为圆的中心点坐标,r圆的半径。这样霍夫的參数空间就

    变成一个三维參数空间。给定圆半径转为二维霍夫參数空间,变换相对简单,也比較经常使用。

    编程思路解析:

    1.      读取一幅带处理二值图像,最好背景为黑色。

    2.      取得源像素数据

    3.      依据直线的霍夫变换公式完毕霍夫变换,预览霍夫空间结果

    4.       寻找最大霍夫值,设置阈值,反变换到图像RGB值空间(程序难点之中的一个)

    5.      越界处理,显示霍夫变换处理以后的图像

     

    关键代码解析:

    直线的变换角度为[0 ~ PI]之间,设置等份为500为PI/500,同一时候依据參数直线參数方程的取值

    范围为[-r, r]有例如以下霍夫參数定义:

     // prepare for hough transform
     int centerX = width / 2;
     int centerY = height / 2;
     double hough_interval = PI_VALUE/(double)hough_space;
    	    
     int max = Math.max(width, height);
     int max_length = (int)(Math.sqrt(2.0D) * max);
     hough_1d = new int[2 * hough_space * max_length];

    实现从像素RGB空间到霍夫空间变换的代码为:

    // start hough transform now....
    int[][] image_2d = convert1Dto2D(inPixels);
    for (int row = 0; row < height; row++) {
    	for (int col = 0; col < width; col++) {
        	int p = image_2d[row][col] & 0xff;
        	if(p == 0) continue; // which means background color
        	
        	// since we does not know the theta angle and r value, 
        	// we have to calculate all hough space for each pixel point
        	// then we got the max possible theta and r pair.
        	// r = x * cos(theta) + y * sin(theta)
        	for(int cell=0; cell < hough_space; cell++ ) {
        		max = (int)((col - centerX) * Math.cos(cell * hough_interval) + (row - centerY) * Math.sin(cell * hough_interval));
        		max += max_length; // start from zero, not (-max_length)
        		if (max < 0 || (max >= 2 * max_length)) {// make sure r did not out of scope[0, 2*max_lenght]
                    continue;
                }
        		hough_2d[cell][max] +=1;
        	}
        }
    }

    寻找最大霍夫值计算霍夫阈值的代码例如以下:

    // find the max hough value
    int max_hough = 0;
    for(int i=0; i<hough_space; i++) {
    	for(int j=0; j<2*max_length; j++) {
    		hough_1d[(i + j * hough_space)] = hough_2d[i][j];
    		if(hough_2d[i][j] > max_hough) {
    			max_hough = hough_2d[i][j];
    		}
    	}
    }
    System.out.println("MAX HOUGH VALUE = " + max_hough);
    
    // transfer back to image pixels space from hough parameter space
    int hough_threshold = (int)(threshold * max_hough);

    从霍夫空间反变换回像素数据空间代码例如以下:

    	    // transfer back to image pixels space from hough parameter space
    	    int hough_threshold = (int)(threshold * max_hough);
    	    for(int row = 0; row < hough_space; row++) {
    	    	for(int col = 0; col < 2*max_length; col++) {
    	    		if(hough_2d[row][col] < hough_threshold) // discard it
    	    			continue;
    	    		int hough_value = hough_2d[row][col];
    	    		boolean isLine = true;
    	    		for(int i=-1; i<2; i++) {
    	    			for(int j=-1; j<2; j++) {
    	    				if(i != 0 || j != 0) {
        		              int yf = row + i;
        		              int xf = col + j;
        		              if(xf < 0) continue;
        		              if(xf < 2*max_length) {
        		            	  if (yf < 0) {
        		            		  yf += hough_space;
        		            	  }
        		                  if (yf >= hough_space) {
        		                	  yf -= hough_space;
        		                  }
        		                  if(hough_2d[yf][xf] <= hough_value) {
        		                	  continue;
        		                  }
        		                  isLine = false;
        		                  break;
        		              }
    	    				}
    	    			}
    	    		}
    	    		if(!isLine) continue;
    	    		
    	    		// transform back to pixel data now...
    	            double dy = Math.sin(row * hough_interval);
    	            double dx = Math.cos(row * hough_interval);
    	            if ((row <= hough_space / 4) || (row >= 3 * hough_space / 4)) {
    	                for (int subrow = 0; subrow < height; ++subrow) {
    	                  int subcol = (int)((col - max_length - ((subrow - centerY) * dy)) / dx) + centerX;
    	                  if ((subcol < width) && (subcol >= 0)) {
    	                	  image_2d[subrow][subcol] = -16776961;
    	                  }
    	                }
    	              } else {
    	                for (int subcol = 0; subcol < width; ++subcol) {
    	                  int subrow = (int)((col - max_length - ((subcol - centerX) * dx)) / dy) + centerY;
    	                  if ((subrow < height) && (subrow >= 0)) {
    	                	  image_2d[subrow][subcol] = -16776961;
    	                  }
    	                }
    	              }
    	    	}
    	    }
    霍夫变换源图例如以下:

    霍夫变换以后,在霍夫空间显演示样例如以下:(白色表示已经找到直线信号)


    终于反变换回到像素空间效果例如以下:


    一个更好的执行监測直线的结果(输入为二值图像):


    完整的霍夫变换源码例如以下:

    package com.gloomyfish.image.transform;
    
    import java.awt.image.BufferedImage;
    
    import com.process.blur.study.AbstractBufferedImageOp;
    
    public class HoughLineFilter extends AbstractBufferedImageOp {
    	public final static double PI_VALUE = Math.PI;
    	private int hough_space = 500;
    	private int[] hough_1d;
    	private int[][] hough_2d;
    	private int width;
    	private int height;
    	
    	private float threshold;
    	private float scale;
    	private float offset;
    	
    	public HoughLineFilter() {
    		// default hough transform parameters
    		//	scale = 1.0f;
    		//	offset = 0.0f;
    		threshold = 0.5f;
    		scale = 1.0f;
    		offset = 0.0f;
    	}
    	
    	public void setHoughSpace(int space) {
    		this.hough_space = space;
    	}
    	
    	public float getThreshold() {
    		return threshold;
    	}
    
    	public void setThreshold(float threshold) {
    		this.threshold = threshold;
    	}
    
    	public float getScale() {
    		return scale;
    	}
    
    	public void setScale(float scale) {
    		this.scale = scale;
    	}
    
    	public float getOffset() {
    		return offset;
    	}
    
    	public void setOffset(float offset) {
    		this.offset = offset;
    	}
    
    	@Override
    	public BufferedImage filter(BufferedImage src, BufferedImage dest) {
    		width = src.getWidth();
            height = src.getHeight();
    
            if ( dest == null )
                dest = createCompatibleDestImage( src, null );
    
            int[] inPixels = new int[width*height];
            int[] outPixels = new int[width*height];
            getRGB( src, 0, 0, width, height, inPixels );
            houghTransform(inPixels, outPixels);
            setRGB( dest, 0, 0, width, height, outPixels );
            return dest;
    	}
    
    	private void houghTransform(int[] inPixels, int[] outPixels) {
            // prepare for hough transform
    	    int centerX = width / 2;
    	    int centerY = height / 2;
    	    double hough_interval = PI_VALUE/(double)hough_space;
    	    
    	    int max = Math.max(width, height);
    	    int max_length = (int)(Math.sqrt(2.0D) * max);
    	    hough_1d = new int[2 * hough_space * max_length];
    	    
    	    // define temp hough 2D array and initialize the hough 2D
    	    hough_2d = new int[hough_space][2*max_length];
    	    for(int i=0; i<hough_space; i++) {
    	    	for(int j=0; j<2*max_length; j++) {
    	    		hough_2d[i][j] = 0;
    	    	}
    	    }
    	    
    	    // start hough transform now....
    	    int[][] image_2d = convert1Dto2D(inPixels);
    	    for (int row = 0; row < height; row++) {
    	    	for (int col = 0; col < width; col++) {
    	        	int p = image_2d[row][col] & 0xff;
    	        	if(p == 0) continue; // which means background color
    	        	
    	        	// since we does not know the theta angle and r value, 
    	        	// we have to calculate all hough space for each pixel point
    	        	// then we got the max possible theta and r pair.
    	        	// r = x * cos(theta) + y * sin(theta)
    	        	for(int cell=0; cell < hough_space; cell++ ) {
    	        		max = (int)((col - centerX) * Math.cos(cell * hough_interval) + (row - centerY) * Math.sin(cell * hough_interval));
    	        		max += max_length; // start from zero, not (-max_length)
    	        		if (max < 0 || (max >= 2 * max_length)) {// make sure r did not out of scope[0, 2*max_lenght]
    	                    continue;
    	                }
    	        		hough_2d[cell][max] +=1;
    	        	}
    	        }
    	    }
    	    
    		// find the max hough value
    		int max_hough = 0;
    		for(int i=0; i<hough_space; i++) {
    			for(int j=0; j<2*max_length; j++) {
    				hough_1d[(i + j * hough_space)] = hough_2d[i][j];
    				if(hough_2d[i][j] > max_hough) {
    					max_hough = hough_2d[i][j];
    				}
    			}
    		}
    		System.out.println("MAX HOUGH VALUE = " + max_hough);
    		
    		// transfer back to image pixels space from hough parameter space
    		int hough_threshold = (int)(threshold * max_hough);
    	    for(int row = 0; row < hough_space; row++) {
    	    	for(int col = 0; col < 2*max_length; col++) {
    	    		if(hough_2d[row][col] < hough_threshold) // discard it
    	    			continue;
    	    		int hough_value = hough_2d[row][col];
    	    		boolean isLine = true;
    	    		for(int i=-1; i<2; i++) {
    	    			for(int j=-1; j<2; j++) {
    	    				if(i != 0 || j != 0) {
        		              int yf = row + i;
        		              int xf = col + j;
        		              if(xf < 0) continue;
        		              if(xf < 2*max_length) {
        		            	  if (yf < 0) {
        		            		  yf += hough_space;
        		            	  }
        		                  if (yf >= hough_space) {
        		                	  yf -= hough_space;
        		                  }
        		                  if(hough_2d[yf][xf] <= hough_value) {
        		                	  continue;
        		                  }
        		                  isLine = false;
        		                  break;
        		              }
    	    				}
    	    			}
    	    		}
    	    		if(!isLine) continue;
    	    		
    	    		// transform back to pixel data now...
    	            double dy = Math.sin(row * hough_interval);
    	            double dx = Math.cos(row * hough_interval);
    	            if ((row <= hough_space / 4) || (row >= 3 * hough_space / 4)) {
    	                for (int subrow = 0; subrow < height; ++subrow) {
    	                  int subcol = (int)((col - max_length - ((subrow - centerY) * dy)) / dx) + centerX;
    	                  if ((subcol < width) && (subcol >= 0)) {
    	                	  image_2d[subrow][subcol] = -16776961;
    	                  }
    	                }
    	              } else {
    	                for (int subcol = 0; subcol < width; ++subcol) {
    	                  int subrow = (int)((col - max_length - ((subcol - centerX) * dx)) / dy) + centerY;
    	                  if ((subrow < height) && (subrow >= 0)) {
    	                	  image_2d[subrow][subcol] = -16776961;
    	                  }
    	                }
    	              }
    	    	}
    	    }
    	    
    	    // convert to hough 1D and return result
    	    for (int i = 0; i < this.hough_1d.length; i++)
    	    {
    	      int value = clamp((int)(scale * this.hough_1d[i] + offset)); // scale always equals 1
    	      this.hough_1d[i] = (0xFF000000 | value + (value << 16) + (value << 8));
    	    }
    	    
    	    // convert to image 1D and return
    	    for (int row = 0; row < height; row++) {
    	    	for (int col = 0; col < width; col++) {
    	        	outPixels[(col + row * width)] = image_2d[row][col];
    	        }
    	    }
    	}
    	
    	public BufferedImage getHoughImage() {
    		BufferedImage houghImage = new BufferedImage(hough_2d[0].length, hough_space, BufferedImage.TYPE_4BYTE_ABGR);
    		setRGB(houghImage, 0, 0, hough_2d[0].length, hough_space, hough_1d);
    		return houghImage;
    	}
    	
    	public static int clamp(int value) {
    	      if (value < 0)
    	    	  value = 0;
    	      else if (value > 255) {
    	    	  value = 255;
    	      }
    	      return value;
    	}
    	
    	private int[][] convert1Dto2D(int[] pixels) {
    		int[][] image_2d = new int[height][width];
    		int index = 0;
    		for(int row = 0; row < height; row++) {
    			for(int col = 0; col < width; col++) {
    				index = row * width + col;
    				image_2d[row][col] = pixels[index];
    			}
    		}
    		return image_2d;
    	}
    
    }
    
    转载文章请务必注明出自本博客!!





  • 相关阅读:
    帕累托分布(Pareto distributions)、马太效应
    Generalized normal distribution and Skew normal distribution
    Secondary NameNode 的作用
    127.0.0.1和0.0.0.0地址的区别
    50070只有本机可以访问(除本机外无法访问)
    SecureCRT SSH 语法高亮
    深入理解VMware虚拟机网络通信原理
    CentOS Virtual Machine 设置SSH主机登录
    路由器(交换机)的光口和电口
    ECC校验
  • 原文地址:https://www.cnblogs.com/hrhguanli/p/3868934.html
Copyright © 2020-2023  润新知