• 树状数组


    树状数组

    树状数组(Binary Indexed Tree(BIT), Fenwick Tree)是一个查询和改动复杂度都为log(n)的数据结构。主要用于查询随意两位之间的全部元素之和,可是每次仅仅能改动一个元素的值;经过简单改动能够在log(n)的复杂度下进行范围改动,可是这时仅仅能查询当中一个元素的值。
    基本概念
    如果数组a[1..n],那么查询a[1]+...+a[n]的时间是log级别的,并且是一个在线的数据结构,支持随时改动某个元素的值,复杂度也为log级别。
    来观察这个图:
    树状数组的结构图

    树状数组的结构图

    令这棵树的结点编号为C1,C2...Cn。令每一个结点的值为这棵树的值的总和,那么easy发现:
    C1 = A1
    C2 = A1 + A2
    C3 = A3
    C4 = A1 + A2 + A3 + A4
    C5 = A5
    C6 = A5 + A6
    C7 = A7
    C8 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8
    ...
    C16 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10 + A11 + A12 + A13 + A14 + A15 + A16
    这里有一个有趣的性质:
    我们来看一下这个规律,
    C1(0001)末尾二进制0的个数是0,而且C1管辖的范围是C1=A1;
    C2(0010)末尾二进制0的个数是1,而且C2管辖的范围是C2=A1+A2;
    C3(0011)末尾二进制0的个数是0,而且C3管辖的范围是C3=A3;
    ......
    C8(1000)末尾二进制0的个数是3,而且C2管辖的范围是C8=A1+A2+A3+A4+A5+A6+A7+A8;
    设节点编号为x,那么这个节点管辖的区间为2^k(当中k为x二进制末尾0的个数)个元素。由于这个区间最后一个元素必定为Ax,
    所以非常明显:Cn = A(n – 2^k + 1) + ... + An
    基本操作
    1,对于C[i]=a[i - 2^k + 1]...a[i]的定义中,比較难以逐磨的k,他的值等于i这个数的二进制表示末尾0的个数.        如4的二进制表示0100,此时k就等于2,而实际上我们还会发现2^k就是前一位的权值,即0100中,2^2=4,刚好        是前一位数1的权值.所以所以2^k能够表示为n&(n^(n-1))或更简单的n&(-n),比如:

     为了表示简便,如果如今一个int型为4位,最高位为符号位

    int i=3&(-3);     此时i=1,3的二进制为0011,-3的二进制为1101(负数存的是补码)所以0011&1101=1

    int j=4&(-4);    此时j=4,理由同上.....

    所以计算2^k我们能够用例如以下代码:

    int lowbit(int n)
    {
    	return n&(-n);
    }
    
    2,求和操作
    在上面的示意图中,若我们须要求sum[1..7]个元素的和,仅须要计算c[7]+c[6]+c[4]的和就可以,到底时间复杂度怎么算呢?一共要进行多少次求和操作呢?

    求sum[1..k],我们需查找k的二进制表示中1的个数次就能得到终于结果,所以时间复杂度为log(n)。

    int GetSum(int n)
    {
    	int sum=0;
    	while(n>0)
    	{
    		sum+=TreeArray[n];
    		n-=lowbit(n);
    	}
    	return sum;
    }
    

    n-=lowbit(n);这一项实际上等价于将当前二进制串中的最后一个1减去,由于数的二进制串中1的个数最多有log(n)个,所以它的时间复杂度为log(n);
    以求sum[1..7]为例,二进制为0111,右边第一个1出如今第0位上,也就是说要从a[7]開始向前数1个元素(仅仅有a[7]),即c[7];

    然后将这个1舍掉,得到6,二进制表示为0110,右边第一个1出如今第1位上,也就是说要从a[6]開始向前数2个元素(a[6],a[5]),即c[6];

    然后舍掉用过的1,得到4,二进制表示为0100,右边第一个1出如今第2位上,也就是说要从a[4]開始向前数4个元素(a[4],a[3],a[2],a[1]),即c[4].

    所以s[7]=c[7]+c[6]+c[4];

    3,更新操作

    在上面的示意图中,如果更改的元素是a[2],那么它影响到得c数组中的元素有c[2],c[4],c[8],我们仅仅需一层一层往上改动就能够了,这个过程的最坏的复杂度也只是O(logN);

    void update(int n,int num)
    {
    	while(n<=MAX)
    	{
    		TreeArray[n]+=num;
    		n+=lowbit(n);
    	}
    }
    

    n+=lowbit(n);这一项实际上等价于在二进制串中补0;

    以改动a[2]元素为例,须要改动c[2],2的二进制为0010,末尾补0为0100,即c[4]

    4的二进制为0100,在末尾补0为1000即c[8]。所以我们须要改动的有c[2],c[4],c[8]


  • 相关阅读:
    IT学习 程序员 学习网址收藏
    PHP地图上的点文字标注
    php 三种文件下载的实现
    10个免费的jQuery富文本编辑器
    Docker Swarm(四)Volume 数据(挂载)持久化
    Docker Swarm(三)Service(服务)分配策略
    Docker Swarm(二)常用命令
    Docker Swarm(一)集群部署
    Linux——Shell脚本参数传递的2种方法
    Linux——系统时间、开机时间
  • 原文地址:https://www.cnblogs.com/hrhguanli/p/3815506.html
Copyright © 2020-2023  润新知