Atomic 从JDK5开始, java.util.concurrent包里提供了很多面向并发编程的类. 使用这些类在多核CPU的机器上会有比较好的性能.
主要原因是这些类里面大多使用(失败-重试方式的)乐观锁而不是synchronized方式的悲观锁.
今天有时间跟踪了一下AtomicInteger的incrementAndGet的实现.
本人对并发编程也不是特别了解, 在这里就是做个笔记, 方便以后再深入研究.
1. incrementAndGet的实现
首先可以看到他是通过一个无限循环(spin)直到increment成功为止.
循环的内容是
1.取得当前值
2.计算+1后的值
3.如果当前值还有效(没有被)的话设置那个+1后的值
4.如果设置没成功(当前值已经无效了即被别的线程改过了), 再从1开始.
2. compareAndSet的实现
直接调用的是UnSafe这个类的compareAndSwapInt方法
全称是sun.misc.Unsafe. 这个类是Oracle(Sun)提供的实现. 可以在别的公司的JDK里就不是这个类了
3. compareAndSwapInt的实现
可以看到, 不是用Java实现的, 而是通过JNI调用操作系统的原生程序.
4. compareAndSwapInt的native实现
如果你下载了OpenJDK的源代码的话在hotspotsrcsharevmprims目录下可以找到unsafe.cpp
可以看到实际上调用Atomic类的cmpxchg方法.
5. Atomic的cmpxchg
这个类的实现是跟操作系统有关, 跟CPU架构也有关, 如果是windows下x86的架构
实现在hotspotsrcos_cpuwindows_x86vm目录的atomic_windows_x86.inline.hpp文件里
在这里可以看到是用嵌入的汇编实现的, 关键CPU指令是 cmpxchg
到这里没法再往下找代码了. 也就是说CAS的原子性实际上是CPU实现的. 其实在这一点上还是有排他锁的. 只是比起用synchronized, 这里的排他时间要短的多. 所以在多线程情况下性能会比较好.
代码里有个alternative for InterlockedCompareExchange
这个InterlockedCompareExchange是WINAPI里的一个函数, 做的事情和上面这段汇编是一样的
http://msdn.microsoft.com/en-us/library/windows/desktop/ms683560%28v=vs.85%29.aspx
6. 最后再贴一下x86的cmpxchg指定
CPU: I486+
Type of Instruction: User
Instruction: CMPXCHG dest, src
Description: Compares the accumulator with dest. If equal the "dest"
is loaded with "src", otherwise the accumulator is loaded
with "dest".
Flags Affected: AF, CF, OF, PF, SF, ZF
CPU mode: RM,PM,VM,SMM
+++++++++++++++++++++++
Clocks:
CMPXCHG reg, reg 6
CMPXCHG mem, reg 7 (10 if compartion fails)
主要原因是这些类里面大多使用(失败-重试方式的)乐观锁而不是synchronized方式的悲观锁.
今天有时间跟踪了一下AtomicInteger的incrementAndGet的实现.
本人对并发编程也不是特别了解, 在这里就是做个笔记, 方便以后再深入研究.
1. incrementAndGet的实现
public final int incrementAndGet() {
for (;;) {
int current = get();
int next = current + 1;
if (compareAndSet(current, next))
return next;
}
}
for (;;) {
int current = get();
int next = current + 1;
if (compareAndSet(current, next))
return next;
}
}
首先可以看到他是通过一个无限循环(spin)直到increment成功为止.
循环的内容是
1.取得当前值
2.计算+1后的值
3.如果当前值还有效(没有被)的话设置那个+1后的值
4.如果设置没成功(当前值已经无效了即被别的线程改过了), 再从1开始.
2. compareAndSet的实现
public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
直接调用的是UnSafe这个类的compareAndSwapInt方法
全称是sun.misc.Unsafe. 这个类是Oracle(Sun)提供的实现. 可以在别的公司的JDK里就不是这个类了
3. compareAndSwapInt的实现
/**
* Atomically update Java variable to <tt>x</tt> if it is currently
* holding <tt>expected</tt>.
* @return <tt>true</tt> if successful
*/
public final native boolean compareAndSwapInt(Object o, long offset,
int expected,
int x);
* Atomically update Java variable to <tt>x</tt> if it is currently
* holding <tt>expected</tt>.
* @return <tt>true</tt> if successful
*/
public final native boolean compareAndSwapInt(Object o, long offset,
int expected,
int x);
可以看到, 不是用Java实现的, 而是通过JNI调用操作系统的原生程序.
4. compareAndSwapInt的native实现
如果你下载了OpenJDK的源代码的话在hotspotsrcsharevmprims目录下可以找到unsafe.cpp
UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x))
UnsafeWrapper("Unsafe_CompareAndSwapInt");
oop p = JNIHandles::resolve(obj);
jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);
return (jint)(Atomic::cmpxchg(x, addr, e)) == e;
UNSAFE_END
UnsafeWrapper("Unsafe_CompareAndSwapInt");
oop p = JNIHandles::resolve(obj);
jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);
return (jint)(Atomic::cmpxchg(x, addr, e)) == e;
UNSAFE_END
可以看到实际上调用Atomic类的cmpxchg方法.
5. Atomic的cmpxchg
这个类的实现是跟操作系统有关, 跟CPU架构也有关, 如果是windows下x86的架构
实现在hotspotsrcos_cpuwindows_x86vm目录的atomic_windows_x86.inline.hpp文件里
inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) {
// alternative for InterlockedCompareExchange
int mp = os::is_MP();
__asm {
mov edx, dest
mov ecx, exchange_value
mov eax, compare_value
LOCK_IF_MP(mp)
cmpxchg dword ptr [edx], ecx
}
}
// alternative for InterlockedCompareExchange
int mp = os::is_MP();
__asm {
mov edx, dest
mov ecx, exchange_value
mov eax, compare_value
LOCK_IF_MP(mp)
cmpxchg dword ptr [edx], ecx
}
}
在这里可以看到是用嵌入的汇编实现的, 关键CPU指令是 cmpxchg
到这里没法再往下找代码了. 也就是说CAS的原子性实际上是CPU实现的. 其实在这一点上还是有排他锁的. 只是比起用synchronized, 这里的排他时间要短的多. 所以在多线程情况下性能会比较好.
代码里有个alternative for InterlockedCompareExchange
这个InterlockedCompareExchange是WINAPI里的一个函数, 做的事情和上面这段汇编是一样的
http://msdn.microsoft.com/en-us/library/windows/desktop/ms683560%28v=vs.85%29.aspx
6. 最后再贴一下x86的cmpxchg指定
Opcode CMPXCHG
CPU: I486+
Type of Instruction: User
Instruction: CMPXCHG dest, src
Description: Compares the accumulator with dest. If equal the "dest"
is loaded with "src", otherwise the accumulator is loaded
with "dest".
Flags Affected: AF, CF, OF, PF, SF, ZF
CPU mode: RM,PM,VM,SMM
+++++++++++++++++++++++
Clocks:
CMPXCHG reg, reg 6
CMPXCHG mem, reg 7 (10 if compartion fails)