题目
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The lef subtree of a node contains only nodes with keys less than the node’s key. The right subtree of a node contains only nodes with keys greater than or equal to the node’s key. Both the lef and right subtrees must also be binary search trees. A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from lef to right. Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10
1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4
题目分析
已知完全二叉查找树的序列,求其层序序列
解题思路
思路 01
- 输入测试用例,升序排序即为二叉查找树的中序序列
- 中序序列递归建树(存储与数组i节点的子节点为2*i,2*i+1,root在1位置)(模拟递归中序遍历过程)
- 顺序打印数组即为层序序列
思路 02
- 输入测试用例,升序排序即为二叉查找树的中序序列
- 中序序列递归建树(存储与数组i节点的子节点为2i,2i+1,root在1位置)(找root的坐标k,将中序序列划分为startk-1左子树和k+1end右子树)
- 顺序打印数组即为层序序列
知识点
完全二叉查找树,任意节点序列建树
注:二叉查找树(不一定要完全二叉树)任意节点序列,升序排序,即为二叉查找树的中序序列
- 方式一:模拟递归打印中序序列的过程,将中序序列依次插入到数组建树
- 方式二:找root在中序序列中的位置k并将root保存到数组,递归处理startk-1左子树和k+1end右子树,完成建树
void inOrder(int root) { //root保存在1位置,index初始化为0
if(root>n) return;
inOrder(root*2);
CBT[root]=number[index++];
inOrder(root*2+1);
}
void getLevel(int start, int end, int index) {
if(start>end)return;
int n=end-start+1;
int l=log(n+1)/log(2);//最后一层的层数
int leave=n-(pow(2,l)-1); //最后一层叶子结点数
//pow(2, l - 1) - 1是除了root结点所在层和最后?层外,左?树的结点个数,pow(2, l - 1) 是l+1
//层最多拥有的属于根结点左?树的结点个数,min(pow(2, l - 1), leave)是最后?个结点真正拥有的
//属于根结点左?树上的结点个数
int root = start+(pow(2,l-1)-1)+min((int)pow(2,l-1),leave);
level[index]=in[root];
getLevel(start,root-1,2*index+1);
getLevel(root+1,end,2*index+2);
}
Code
Code 01
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=1000;
int n,m;
int number[maxn],CBT[maxn],index=0;
void inOrder(int root) {
if(root>n) {
return;
}
inOrder(root*2);
CBT[root]=number[index++];
inOrder(root*2+1);
}
int main(int argc,char * argv[]) {
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&m);
number[i]=m;
}
// 递增排序--二叉查找树中序序列
sort(number,number+n);
inOrder(1);//根节点在1位置
for(int i=1; i<=n;i++) {
if(i!=1)printf(" ");
printf("%d",CBT[i]);
}
return 0;
}
Code 02
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
vector<int> in,level;
void getLevel(int start, int end, int index) {
if(start>end)return;
int n=end-start+1;
int l=log(n+1)/log(2);//最后一层的层数
int leave=n-(pow(2,l)-1); //最后一层叶子结点数
//pow(2, l - 1) - 1是除了root结点所在层和最后?层外,左?树的结点个数,pow(2, l - 1) 是l+1
//层最多拥有的属于根结点左?树的结点个数,min(pow(2, l - 1), leave)是最后?个结点真正拥有的
//属于根结点左?树上的结点个数
int root = start+(pow(2,l-1)-1)+min((int)pow(2,l-1),leave);
level[index]=in[root];
getLevel(start,root-1,2*index+1);
getLevel(root+1,end,2*index+2);
}
int main(int argc,char * argv[]) {
int n;
scanf("%d",&n);
in.resize(n);
level.resize(n);
for(int i=0; i<n; i++) {
scanf("%d",&in[i]);
}
sort(in.begin(),in.end());
getLevel(0,n-1,0);
printf("%d",level[0]);
for(int i=1; i<n; i++) {
printf(" %d",level[i]);
}
return 0;
}