• 基于keras中IMDB的文本分类 demo


     

    本次demo主题是使用keras对IMDB影评进行文本分类:

    import tensorflow as tf
    from tensorflow import keras
    import numpy as np
    
    print(tf.__version__)
    
    imdb = keras.datasets.imdb
    
    (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
    print("Training entries: {}, labels: {}".format(len(train_data), len(train_labels)))
    print(train_data[0])
    len(train_data[0]), len(train_data[1])
    
    # A dictionary mapping words to an integer index
    word_index = imdb.get_word_index()
    
    # The first indices are reserved
    word_index = {k:(v+3) for k,v in word_index.items()} 
    word_index["<PAD>"] = 0
    word_index["<START>"] = 1
    word_index["<UNK>"] = 2  # unknown
    word_index["<UNUSED>"] = 3
    
    reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
    
    #把数字序列转化为相应的字符串
    def decode_review(text):
        return ' '.join([reverse_word_index.get(i, '?') for i in text])
    
    #显示其中一个评价
    decode_review(train_data[0])
    
    #pad填充使其长度一样
    train_data = keras.preprocessing.sequence.pad_sequences(train_data,
                                                            value=word_index["<PAD>"],
                                                            padding='post',
                                                            maxlen=256)
    
    test_data = keras.preprocessing.sequence.pad_sequences(test_data,
                                                           value=word_index["<PAD>"],
                                                           padding='post',
                                                           maxlen=256)
    
    len(train_data[0]), len(train_data[1])
    print(train_data[0])
    
    # input shape is the vocabulary count used for the movie reviews (10,000 words)
    vocab_size = 10000
    #建立模型
    model = keras.Sequential()
    model.add(keras.layers.Embedding(vocab_size, 16))
    model.add(keras.layers.GlobalAveragePooling1D())  #对序列维度求平均,为每个示例返回固定长度的输出向量
    model.add(keras.layers.Dense(16, activation=tf.nn.relu))
    model.add(keras.layers.Dense(1, activation=tf.nn.sigmoid))
    
    #显示模型的概况
    model.summary()
    
    model.compile(optimizer=tf.train.AdamOptimizer(),
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    
    #创建验证集
    x_val = train_data[:10000]
    partial_x_train = train_data[10000:]
    
    y_val = train_labels[:10000]
    partial_y_train = train_labels[10000:]
    
    #训练
    history = model.fit(partial_x_train,
                        partial_y_train,
                        epochs=40,
                        batch_size=512,
                        validation_data=(x_val, y_val),
                        verbose=1)
    
    results = model.evaluate(test_data, test_labels)
    print(results)
    
    history_dict = history.history
    history_dict.keys()
    ##out:dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])
    
    
    ##显示loss下降的图
    import matplotlib.pyplot as plt
    
    acc = history.history['acc']
    val_acc = history.history['val_acc']
    loss = history.history['loss']
    val_loss = history.history['val_loss']
    
    epochs = range(1, len(acc) + 1)
    
    # "bo" is for "blue dot"
    plt.plot(epochs, loss, 'bo', label='Training loss')
    # b is for "solid blue line"
    plt.plot(epochs, val_loss, 'b', label='Validation loss')
    plt.title('Training and validation loss')
    plt.xlabel('Epochs')
    plt.ylabel('Loss')
    plt.legend()
    
    plt.show()
    
    
    ##显示accuracy上升的图
    plt.clf()   # clear figure
    acc_values = history_dict['acc']
    val_acc_values = history_dict['val_acc']
    
    plt.plot(epochs, acc, 'bo', label='Training acc')
    plt.plot(epochs, val_acc, 'b', label='Validation acc')
    plt.title('Training and validation accuracy')
    plt.xlabel('Epochs')
    plt.ylabel('Accuracy')
    plt.legend()
    
    plt.show()

    layers的概况

    _________________________________________________________________

    Layer (type)           Output Shape           Param

    # =================================================================

    embedding (Embedding)       (None, None, 16)         160000

    _________________________________________________________________

    global_average_pooling1d (Gl     (None, 16)             0

    _________________________________________________________________

    dense (Dense)            (None, 16)             272

    _________________________________________________________________

    dense_1 (Dense)           (None, 1)              17

    =================================================================

    Total params: 160,289

    Trainable params: 160,289

    Non-trainable params: 0

    _________________________________________________________________

  • 相关阅读:
    CentOS7 下更改源
    /usr/bin/perl:bad interpreter:No such file or directory 的解决办法
    Centos7 安装wget命令
    Cannot find a valid baseurl for repo: base/7/x86_6 解决方法
    python 启动新进程执行脚本
    MongoDB数据类型
    pymongo.errors.OperationFailure: Authentication failed.
    python连接MongoDB(有密码有认证)
    Mongodb 创建管理员帐号与普通帐号
    python连接MongoDB(无密码无认证)
  • 原文地址:https://www.cnblogs.com/hotsnow/p/9506354.html
Copyright © 2020-2023  润新知