description
analysis
-
首先有一个结论,对于([1,i])区间划分最后一段的和尽量小,答案会更优,具体证明参考毛爷爷的博客
-
设(f[i])为满足([1,i])划分最优时、((f[i],i])这段和最小时的最右的端点,最优划分即为从(n)开始向(f)不断统计
-
由后一段比前一段大可知(sum[f[i]]-sum[f[f[i]]]≤sum[i]-sum[f[i]]),即(sum[i]≥2sum[f[i]]-sum[f[f[i]]])
-
右边只和(f[i])有关,把右边的记为(clac(f[i])),于是可以维护一个(clac)值上升的单调队列来求出每一位的(f)
-
具体维护就是,队头不断出队直到(sum[i]<clac(q[head]))(因为(f[i])要尽可能大),(f[i])赋为队头
-
若(clac(i)≤clac(q[tail]))队尾再不断出队(因为(clac(i))更小且(i)更靠右),最后(i)进队,就完成了队列的维护
code
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define MAXN 40000005
#define ha 1073741824
#define ll long long
#define LL __int128
#define reg register int
#define fo(i,a,b) for (reg i=a;i<=b;++i)
#define fd(i,a,b) for (reg i=a;i>=b;--i)
using namespace std;
int p[100005],l[100005],r[100005];
int f[MAXN],q[MAXN];
ll b[MAXN],sum[MAXN];
int n,type;
inline int read()
{
ll x=0,f=1;char ch=getchar();
while (ch<'0' || '9'<ch){if (ch=='-')f=-1;ch=getchar();}
while ('0'<=ch && ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
inline ll clac(ll x){return 2*sum[x]-sum[f[x]];}
inline void print(LL x)
{
int num[55];num[0]=0;
while (x)num[++num[0]]=x%10,x/=10;
while (num[0])printf("%d",num[num[0]--]);
printf("
");
}
int main()
{
n=read(),type=read();
if (type)
{
int x=read(),y=read(),z=read();b[1]=read(),b[2]=read();int m=read(),now=1;
fo(i,1,m)p[i]=read(),l[i]=read(),r[i]=read();
fo(i,3,n)b[i]=(x*b[i-1]%ha+y*b[i-2]%ha+z)%ha;
fo(i,1,n)
{
if (i>p[now])++now;
sum[i]=sum[i-1]+(b[i]%(r[now]-l[now]+1))+l[now];
}
}
else {fo(i,1,n)sum[i]=sum[i-1]+read();}
int head=0,tail=0;
fo(i,1,n)
{
while (head<tail && sum[i]>=clac(q[head+1]))++head;
f[i]=q[head];
while (head<tail && clac(i)<=clac(q[tail]))--tail;
q[++tail]=i;
}
LL ans=0;
for (reg i=n;i;i=f[i])ans+=(LL)(sum[i]-sum[f[i]])*(sum[i]-sum[f[i]]);
print(ans);
return 0;
}