• 【JZOJ6411】上网


    description


    analysis

    • 如果把所有大小关系连成边,小的往大的连,就可以直接上拓扑

    • 暴力连边时间复杂度(O(n^2)),然而连边的过程,考虑用线段树优化

    • 线段树上的所有儿子节点向父亲节点连(0)边,

    • 每个操作被分成(k+1)个小区间,然后该操作的编号向(k)个区间最大值连(1)

    • 对于线段树上表示小区间的(log)个区间,都向该编号连(0)

    • 最后一波拓扑就好了,这类套路要记一下


    code

    #pragma GCC optimize("O3")
    #pragma G++ optimize("O3")
    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    #include<queue>
    #define MAXN 100005
    #define ll long long
    #define reg register ll
    #define max(x,y) ((x>y)?(x):(y))
    #define min(x,y) ((x<y)?(x):(y))
    #define fo(i,a,b) for (reg i=a;i<=b;++i)
    #define fd(i,a,b) for (reg i=a;i>=b;--i)
    #define rep(i,a) for (reg i=last[a];i;i=next[i])
    
    using namespace std;
    
    ll last[MAXN*50],next[MAXN*50],tov[MAXN*50],len[MAXN*50];
    ll a[MAXN*20],d[MAXN*20],pos[MAXN];
    ll n,m,q,now,tot;
    queue<ll>Q;
    
    inline ll read()
    {
    	ll x=0,f=1;char ch=getchar();
    	while (ch<'0' || '9'<ch){if (ch=='-')f=-1;ch=getchar();}
    	while ('0'<=ch && ch<='9')x=x*10+ch-'0',ch=getchar();
    	return x*f;
    }
    inline void link(ll x,ll y,ll z){next[++tot]=last[x],last[x]=tot,tov[tot]=y,len[tot]=z,++d[y];}
    inline void maketree(ll t,ll l,ll r)
    {
    	now=max(now,t);if (l==r){pos[l]=t;return;}
    	ll mid=(l+r)>>1;link(t<<1,t,0),link((t<<1)+1,t,0);
    	maketree(t<<1,l,mid),maketree((t<<1)+1,mid+1,r);
    }
    inline void query(ll t,ll l,ll r,ll x,ll y)
    {
    	if (l==x && y==r){link(t,now,0);return;}
    	ll mid=(l+r)>>1;
    	if (x<=mid)query(t<<1,l,mid,x,min(y,mid));
    	if (y>mid)query((t<<1)+1,mid+1,r,max(x,mid+1),y);
    }
    int main()
    {
    	freopen("web.in","r",stdin);
    	//freopen("web.out","w",stdout);
    	n=read(),m=read(),q=read();
    	maketree(1,1,n);
    	fo(i,1,m){ll x=read();a[pos[x]]=read();}
    	while (q--)
    	{
    		ll l=read(),r=read(),k=read(),x=l;++now;
    		fo(i,1,k)
    		{
    			ll y=read();if (x<=y-1)query(1,1,n,x,y-1);
    			link(now,pos[y],1),x=y+1;
    		}
    		if (x<=r)query(1,1,n,x,r);
    	}
    	fo(i,1,now)if (!d[i]){Q.push(i);if (!a[i])a[i]=1;}
    	while (!Q.empty())
    	{
    		ll x=Q.front();Q.pop();
    		rep(i,x)
    		{
    			a[tov[i]]=max(a[tov[i]],a[x]+len[i]);
    			if (!(--d[tov[i]]))Q.push(tov[i]);
    		}
    	}
    	printf("Possible
    ");
    	fo(i,1,n)printf("%lld ",a[pos[i]]);
    	printf("
    ");
    	return 0;
    }
    
  • 相关阅读:
    Django笔记&教程 2-2 URL详细匹配规则
    Django笔记&教程 2-3 视图(view)函数介绍
    前端基础之HTML
    Python基础之(并发编程)
    Git常用命令
    Python基础之(Socket编程)
    Python基础之(异常与开发规范)
    Python基础之(面向对象进阶)
    Python基础之(面向对象初识)
    Python基础之(常用模块)
  • 原文地址:https://www.cnblogs.com/horizonwd/p/11825917.html
Copyright © 2020-2023  润新知