• 百度paddle框架学习(一):简单DNN完成手势识别


    一、图像预处理

    1.1 数据集来源

    百度AI Studio平台手势识别数据集:https://aistudio.baidu.com/aistudio/datasetdetail/2182

    1.2 目录结构

    解压数据集中Dataset.zip文件,删除数据集文件夹中名为.DS_Store的文件,得到如图目录结构:
    在这里插入图片描述

    1.3 图像预处理代码

    1. 生成图像列表(10%的数据用于测试,90%的数据用于训练)
    import os
    
    
    data_path = './Dataset'
    character_folders = os.listdir(data_path)
    if os.path.exists('./train_data.txt'):
        os.remove('./train_data.txt')
    if os.path.exists('./test_data.txt'):
        os.remove('./test_data.txt')
    
    for character_folder in character_folders:
        with open('./train_data.txt', 'a') as f_train:
            with open('./test_data.txt', 'a') as f_test:
                if character_folder == '.DS_Store':
                    continue
                character_imgs = os.listdir(os.path.join(data_path, character_folder))
                count = 0
                for img in character_imgs:
                    if img == '.DS_Store':
                        continue
                    if count % 10 == 0:
                        f_test.write(os.path.join(data_path, character_folder, img) + '	' + character_folder + '
    ')
                    else:
                        f_train.write(os.path.join(data_path, character_folder, img) + '	' + character_folder + '
    ')
                    count += 1
    print('数据列表生成完成')
    定义训练集和测试集reader,生成data文件
    import os
    import paddle
    import numpy as np
    
    from PIL import Image
    from multiprocessing import cpu_count
    
    # 定义训练集和测试集的reader
    def data_mapper(sample):
        """读取图片,对图片进行归一化处理,返回图片和标签
        """
        img, label = sample
        img = Image.open(img)
        img = img.resize((100, 100), Image.ANTIALIAS)
        img = np.array(img).astype('float32')
        img = img.transpose((2, 0, 1))  # 读出来的图像为rgb图像,转至成为rrr、ggg、bbb
        img = img / 255.0
        return img, label
    
    
    def data_reader(data_list_path):
        """按照train_list和test_list批量读取图片
        """
        def reader():
            with open(data_list_path, 'r') as f:
                lines = f.readlines()
                for line in lines:
                    img, label = line.split('	')
                    yield img, int(label)
    
        return paddle.reader.xmap_readers(data_mapper, reader, cpu_count(), 512)
    
    
    train_reader = paddle.batch(
        reader=paddle.reader.shuffle(reader=data_reader('./train_data.txt'),  # shuffle()有一个乱序过程保证训练结果具有较好泛化能力
                                     buf_size=256),
        batch_size=32)
    test_reader = paddle.batch(reader=data_reader('./test_data.txt'), batch_size=32)
    
    

    说明:当前目录下生成的 train_data.txt 和 test_data.txt 文件主要用于存储数据路径和分类标签,内容如下,test_data.txt ——>
    在这里插入图片描述
    train_data.txt ——>
    在这里插入图片描述

    二、网络模型定义与训练

    2.1 网络模型定义

    说明:网络模型为简单的DNN模型,代码如下

    import paddle.fluid as fluid
    from paddle.fluid.dygraph import Linear
    
    # 网络模型定义
    class MyDNN(fluid.dygraph.Layer):
        def __init__(self):
            super(MyDNN, self).__init__()
            self.hidden1 = Linear(100, 100, act='relu')
            self.hidden2 = Linear(100, 100, act='relu')
            self.hidden3 = Linear(100, 100, act='relu')
            self.hidden4 = Linear(3 * 100 * 100, 10, act='softmax')
    
        def forward(self, input):
            x = self.hidden1(input)
            x = self.hidden2(x)
            x = self.hidden3(x)
            x = fluid.layers.reshape(x, shape=[-1, 3 * 100 * 100])
            y = self.hidden4(x)
            return y

    2.2 模型训练代码

    import paddle
    import numpy as np
    import paddle.fluid as fluid
    import paddle.fluid.layers as layers
    
    from PIL import Image
    from multiprocessing import cpu_count
    from paddle.fluid.dygraph import Linear
    
    # 训练
    with fluid.dygraph.guard():
        l_rate = 0.001
        model = MyDNN()
        model.train()
        opt = fluid.optimizer.SGDOptimizer(learning_rate=l_rate,
                                           parameter_list=model.parameters())   # 梯度下降
        epochs_num = 10     # 迭代次数
        for pass_num in range(epochs_num):
            for batch_id, data in enumerate(train_reader()):
                images = np.array([x[0].reshape(3, 100, 100) for x in data], np.float32)
                labels = np.array([x[1] for x in data]).astype('int64')
                labels = labels[:, np.newaxis]
                # 将ny转换成dygraph接收输入,该函数实现从numpy.ndarray对象创建一个variable类型对象
                image = fluid.dygraph.to_variable(images)
                label = fluid.dygraph.to_variable(labels)
                predict = model(image)
    
                loss = layers.cross_entropy(predict, label)     # 交叉熵
                avg_loss = layers.mean(loss)
                acc = layers.accuracy(predict, label)   # 精度计算
    
                if batch_id != 0 and batch_id % 15 == 0:
                    print('train_pass:{}, batch_id:{}, train_loss:{}, acc:{}'.format(pass_num,
                                                                                     batch_id,
                                                                                     avg_loss.numpy(),
                                                                                     acc.numpy()[0],
                                                                                     ))
                avg_loss.backward()         # 使用backward()方法执行反向网络
                opt.minimize(avg_loss)      # 调用定义的优化器对象的minimize方法进行参数更新
                model.clear_gradients()     # 每一轮参数更新完成后调用clear_gradients()重置梯度,保证下一轮准确性
    
        fluid.save_dygraph(model.state_dict(), 'MyDNN')

    说明:模型训练时简单迭代10次,训练出的模型效果并不好,这里主要提供一种代码思路,并未做任何优化。保存的模型文件名为”MyDNN.pdparams",保存在当前目录下。


    训练过程:
    在这里插入图片描述

    三、模型测试

    项目目录结构如下:
    在这里插入图片描述
    代码如下:

    import matplotlib.pyplot as plt
    import paddle.fluid.layers as layers
    import Gesture_Recognition as GR
    import paddle.fluid as fluid
    import numpy as np
    
    
    from PIL import Image
    from Gesture_Recognition import  test_reader
    
    
    with fluid.dygraph.guard():
        accs = []
        model_dict, _ = fluid.load_dygraph('MyDNN.pdparams')
        model = GR.MyDNN()
        model.load_dict(model_dict)     # 加载模型
        model.eval()    # 模型评估
        for batch_id, data in enumerate(test_reader()):
            images = np.array([x[0].reshape(3, 100, 100) for x in data], np.float32)
            labels = np.array([x[1] for x in data]).astype('int64')
            labels = labels[:, np.newaxis]
            image = fluid.dygraph.to_variable(images)
            label = fluid.dygraph.to_variable(labels)
            predict = model(image)
            acc = layers.accuracy(predict, label)  # 精度计算
            accs.append(acc.numpy()[0])
            avg_acc = np.mean(accs)
        print('平均acc:', avg_acc)
    
    
    # 读取预测图象进行预测
    def load_image(path):
        img = Image.open(path)
        img = img.resize((100, 100), Image.ANTIALIAS)
        img = np.array(img).astype('float32')
        img = img.transpose((2, 0, 1))
        img = img / 255.0
        # print(img.shape)
        return img
    
    
    # 构建预测动态图
    with fluid.dygraph.guard():
        infer_path = '手势.JPG'
        model = GR.MyDNN()
        model_dict, _ = fluid.load_dygraph('MyDNN.pdparams')
        model.load_dict(model_dict)  # 加载模型
        model.eval()  # 模型评估
        infer_img = load_image(infer_path)
        infer_img = np.array(infer_img).astype('float32')
        infer_img = infer_img[np.newaxis, :, :, :]
        infer_img = fluid.dygraph.to_variable(infer_img)
        result = model(infer_img)
        print('预测值:', np.argmax(result.numpy()))
        plt.imshow(Image.open('手势.JPG'))
        plt.show()

    运行结果:
    在这里插入图片描述

  • 相关阅读:
    NodeJS旅程 : module 不可忽略的重点
    NodeJS旅程 : Less
    NodeJS旅程 : express
    新的旅程:NodeJS
    活用命令模式
    20145226《信息安全系统设计基础》第0周学习总结
    20145226夏艺华 《Java程序设计》第1周学习总结
    学习 MySQL-DBA常用SQL汇总
    关于旗舰店直通车的由来
    学习 Mysql
  • 原文地址:https://www.cnblogs.com/horacle/p/13167751.html
Copyright © 2020-2023  润新知