• 「CF235E」Number Challenge「莫比乌斯反演」


    一个结论:(从二维扩展来的,三维也是对的,证明可以考虑质因数分解)

    [d(ijk)=sum_{i'|i}sum_{j'|j}sum_{k'|k}[gcd(i',j')=1][gcd(i', k')=1][gcd(j', k')=1] ]

    [sum_{i=1}^asum_{j=1}^bsum_{k=1}^csum_{i'|i}sum_{j'|j}sum_{k'|k}[gcd(i',j')=1][gcd(i', k')=1][gcd(j', k')=1] ]

    [sum_{i'=1}^asum_{j'=1}^bsum_{k'=1}^c[gcd(i',j')=1][gcd(i', k')=1][gcd(j', k')=1]lfloorfrac{a}{i'} floorlfloorfrac{b}{j'} floorlfloorfrac{c}{k'} floor ]

    [sum_{i'=1}^asum_{j'=1}^blfloorfrac{a}{i'} floorlfloorfrac{b}{j'} floor[gcd(i',j')=1]sum_{k'=1}^c[gcd(i'j', k')=1]lfloorfrac{c}{k'} floor ]

    记:

    [f(x)=sum_{k'=1}^c[gcd(x, k')=1]lfloorfrac{c}{k'} floor ]

    [f(x)=sum_{k'=1}^csum_{d|x,d|k'}mu(d)lfloorfrac{c}{k'} floor ]

    [f(x)=sum_{d|x}mu(d)sum_{d|k'}lfloorfrac{c}{k'} floor ]

    把先把(g(x)=sum_{x|k'}lfloorfrac{c}{k'} floor)预处理出来。

    然后可以预处理出来(f(x)=sum_{d|x}mu(d)g(d),xin[1,ab])

    则答案为:

    [sum_{i'=1}^asum_{j'=1}^blfloorfrac{a}{i'} floorlfloorfrac{b}{j'} floor[gcd(i',j')=1] f(i'j') ]

    #include <algorithm>
    #include <cstdio>
    using namespace std;
    const int m = (1 << 30) - 1;
    const int N = 4e6 + 5;
    int p[N], mu[N], f[N], c;
    bool tag[N];
    void sieve(int n) {
    	mu[1] = 1;
    	for(int i = 2; i <= n; i ++) {
    		if(!tag[i]) { p[++ c] = i; mu[i] = -1; }
    		for(int j = 1; j <= c && i * p[j] <= n; j ++) {
    			tag[i * p[j]] = 1;
    			if(i % p[j] == 0) break ;
    			mu[i * p[j]] = - mu[i];
    		}
    	}
    }
    int main() {
    	int a, b, c;
    	scanf("%d%d%d", &a, &b, &c);
    	if(a > b) swap(a, b);
    	if(a > c) swap(a, c);
    	if(b > c) swap(b, c);
    	int ans = 0; sieve(a * b);
    	for(int i = 1; i <= c; i ++) {
    		int g = 0;
    		for(int j = i; j <= c; j += i) {
    			g += c / j;
    		}
    		for(int j = i; j <= a * b; j += i) {
    			(f[j] += mu[i] * g) &= m;
    		}
    	}
    	for(int i = 1; i <= a; i ++) {
    		for(int j = 1; j <= b; j ++) {
    			if(__gcd(i, j) == 1) {
    				(ans += (1ll * (a / i) * (b / j) * f[i * j]) & m) &= m;
    			}
    		}
    	}
    	printf("%d
    ", ans);
    	return 0;
    }
    
  • 相关阅读:
    损失函数 代价函数 评分函数 目标函数
    python目录索引
    机器学习/深度学习资料合集
    Git笔记
    目标检测中的正负样本分配
    map计算
    nms
    08shell脚本
    07makefile文件
    05-STL
  • 原文地址:https://www.cnblogs.com/hongzy/p/11704628.html
Copyright © 2020-2023  润新知