• 「BZOJ 2653」middle「主席树」「二分」


    题意

    一个长度为(n)的序列(a),设其排过序之后为(b),其中位数定义为(b[n/2]),其中(a,b)(0)开始标号,除法取下整。给你一个长度为(n)的序列(s)。回答(Q)个这样的询问:(s)的左端点在([a,b])之间,右端点在([c,d])之间的子序列中,最大的中位数。其中(a<b<c<d)。位置也从(0)开始标号。强制在线。

    题解

    比较套路地,我们考虑二分这个中位数(设为当前(mid)),如果它偏左就往右移,否则往左移

    为了方便,若(x<mid),它的贡献是(-1),否则是(1),这样我们只要看总贡献的正负就行

    我们就求出([b + 1, c - 1])的贡献,加上([a, b])的最大后缀和([c, d])的最大前缀

    我们考虑怎么求一个区间([l, r])(c)的贡献的前缀max,后缀max,区间和。如果对下标开主席树,区间和可以,但前两个操作不太行。

    考虑两维互换。先考虑([1, n])(1)(注意这里已经离散化过了)的贡献,然后再移动到([1, n])(2)的贡献。我们发现总共只有(n)(1)被改成(-1)的操作,就可以主席树了

    询问的时候只要在一棵主席树上查询就行了,因为我们维护的并不是前缀信息。

    #include <algorithm>
    #include <cstdio>
    #include <vector>
    using namespace std;
    
    const int N = 3e4 + 10;
    const int M = N * 40;
    int n, q, a[N], num[N], b[N], T[N], ls[M], rs[M], id;
    vector<int> pos[N];
    struct Node {
    	int s, lm, rm;
    	void init(int x) { s = lm = rm = x; }
    } t[M];
    void merge(Node &ans, const Node &l, const Node &r) {
    	ans.s = l.s + r.s; ans.lm = max(l.lm, l.s + r.lm); ans.rm = max(r.rm, r.s + l.rm);
    }
    void build(int &u, int l, int r) {
    	u = ++ id;
    	if(l == r) { t[u].init(1); return ; }
    	int mid = (l + r) >> 1;
    	build(ls[u], l, mid);
    	build(rs[u], mid + 1, r);
    	merge(t[u], t[ls[u]], t[rs[u]]);
    }
    void ins(int &u, int p, int l, int r, int x) {
    	u = ++ id; t[u] = t[p]; ls[u] = ls[p]; rs[u] = rs[p];
    	if(l == r) { t[u].init(-1); return ; }
    	int mid = (l + r) >> 1;
    	if(x <= mid) ins(ls[u], ls[p], l, mid, x);
    	else ins(rs[u], rs[p], mid + 1, r, x);
    	merge(t[u], t[ls[u]], t[rs[u]]);
    }
    Node qry(int u, int l, int r, int ql, int qr) {
    	if(l == ql && r == qr) return t[u];
    	int mid = (l + r) >> 1;
    	if(qr <= mid) return qry(ls[u], l, mid, ql, qr);
    	if(ql > mid) return qry(rs[u], mid + 1, r, ql, qr);
    	Node ans;
    	merge(ans, qry(ls[u], l, mid, ql, mid), qry(rs[u], mid + 1, r, mid + 1, qr));
    	return ans;
    }
    int qry_sum(int u, int l, int r, int ql, int qr) {
    	if(l == ql && r == qr) return t[u].s;
    	int mid = (l + r) >> 1;
    	if(qr <= mid) return qry_sum(ls[u], l, mid, ql, qr);
    	if(ql > mid) return qry_sum(rs[u], mid + 1, r, ql, qr);
    	return qry_sum(ls[u], l, mid, ql, mid) + qry_sum(rs[u], mid + 1, r, mid + 1, qr);
    }
    int calc(int a, int b, int c, int d, int mid) {
    	int ans = qry(T[mid], 1, n, a, b).rm + qry(T[mid], 1, n, c, d).lm;
    	if(b + 1 < c) ans += qry_sum(T[mid], 1, n, b + 1, c - 1);
    	return ans;
    }
    int solve(int a, int b, int c, int d) {
    	int l = 1, r = n, mid;
    	while(l <= r) {
    		mid = (l + r) >> 1;
    		if(calc(a, b, c, d, mid) >= 0) l = mid + 1;
    		else r = mid - 1;
    	}
    	return num[l - 1];
    }
    int main() {
    	scanf("%d", &n);
    	for(int i = 1; i <= n; i ++) scanf("%d", a + i), num[i] = a[i];
    	sort(num + 1, num + n + 1);
    	for(int i = 1; i <= n; i ++) b[i] = lower_bound(num + 1, num + n + 1, a[i]) - num, pos[b[i]].push_back(i);
    	build(T[1], 1, n);
    	for(int i = 2; i <= n; i ++) {
    		T[i] = T[i - 1];
    		for(int j = 0; j < pos[i - 1].size(); j ++)
    			ins(T[i], T[i], 1, n, pos[i - 1][j]);
    	}
    	scanf("%d", &q);
    	int arr[4], la_ans = 0;
    	for(int i = 1; i <= q; i ++) {
    		scanf("%d%d%d%d", arr, arr + 1, arr + 2, arr + 3);
    		for(int j = 0; j < 4; j ++) arr[j] = (arr[j] + la_ans) % n;
    		sort(arr, arr + 4);
    		printf("%d
    ", la_ans = solve(arr[0] + 1, arr[1] + 1, arr[2] + 1, arr[3] + 1));
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    vim tail
    范式
    $@疑点
    ^ $ 和 a z 字符匹配
    [导入]DataList编辑、更新、取消、删除、分页(分页控件AspNetPager.dll)
    [导入]用.net操作word
    导出文件
    [导入]总结:ADO.NET在开发中的部分使用方法和技巧
    读取DataTable中的数据,一行一行进行比较
    [导入]ASP.NET 数据访问类
  • 原文地址:https://www.cnblogs.com/hongzy/p/11366103.html
Copyright © 2020-2023  润新知