• 【刷题】BZOJ 3495 PA2010 Riddle


    Description

    有n个城镇被分成了k个郡,有m条连接城镇的无向边。

    要求给每个郡选择一个城镇作为首都,满足每条边至少有一个端点是首都。

    Input

    第一行有三个整数,城镇数n(1<=n<=106),边数m(0<=m<=106),郡数k(1<=k<=n)。

    接下来m行,每行有两个整数ai和bi(ai≠bi),表示有一条无向边连接城镇ai和bi。

    接下来k行,第j行以一个整数wj开头,后面是wj个整数,表示第j个郡包含的城镇。

    Output

    若有解输出TAK,否则输出NIE。

    Sample Input

    6 5 2

    1 2

    3 1

    1 4

    5 2

    6 2

    3 3 4 2

    3 1 6 5

    Sample Output

    TAK

    Solution

    边的要求就是2-SAT的典型限制

    额外需要考虑的就是一个国家只能选一个首都的限制,如果直接连的话,边的复杂度是 (O(n^2)) 的,承受不了,考虑怎么优化

    这个优化也很神奇,叫做前缀后缀连边优化

    除了原来的 (n) 个点,再建 (n) 个点。在一个国家里,如果 (x) 号点在第 (j) 个位置,即 (a[j]=x) ,那么多建的 (x') 这个点代表的就是这个国家里的前 (j) 个点有没有选到的

    于是就会出来几条限制

    1. 如果 (a[j]) 选了,那么 (a[j]') 肯定也选了;反之,如果 (a[j]') 没选,那么 (a[j]) 肯定没选

    2. 一个国家中,如果第 (a[j]') 没选,那么 (a[j-1]') 肯定也没选

    3. 一个国家中,如果 (a[j]') 选了,那么 (a[j+1]') 肯定也选了

    4. 一个国家中,如果 (a[j]) 选了,那么 (a[j-1]') 肯定没选

    5. 一个国家中,如果 (a[j-1]') 选了,那么 (a[j]) 肯定没选

    于是边数优化成 (O(n)) ,跑2-SAT就可以了

    #include<bits/stdc++.h>
    #define ui unsigned int
    #define ll long long
    #define db double
    #define ld long double
    #define ull unsigned long long
    const int MAXN=4000000+10;
    int n,m,k,a[MAXN],e,beg[MAXN],nex[MAXN<<1],to[MAXN<<1],Be[MAXN],DFN[MAXN],LOW[MAXN],Visit_Num,Stack[MAXN],Stack_Num,In_Stack[MAXN],cnt;
    template<typename T> inline void read(T &x)
    {
    	T data=0,w=1;
    	char ch=0;
    	while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
    	if(ch=='-')w=-1,ch=getchar();
    	while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
    	x=data*w;
    }
    template<typename T> inline void write(T x,char ch='')
    {
    	if(x<0)putchar('-'),x=-x;
    	if(x>9)write(x/10);
    	putchar(x%10+'0');
    	if(ch!='')putchar(ch);
    }
    template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
    template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
    template<typename T> inline T min(T x,T y){return x<y?x:y;}
    template<typename T> inline T max(T x,T y){return x>y?x:y;}
    inline void insert(int x,int y)
    {
    	to[++e]=y;
    	nex[e]=beg[x];
    	beg[x]=e;
    }
    inline void Tarjan(int x)
    {
    	DFN[x]=LOW[x]=++Visit_Num;
    	In_Stack[x]=1;
    	Stack[++Stack_Num]=x;
    	for(register int i=beg[x];i;i=nex[i])
    		if(!DFN[to[i]])Tarjan(to[i]),chkmin(LOW[x],LOW[to[i]]);
    		else if(In_Stack[to[i]]&&DFN[to[i]]<LOW[x])LOW[x]=DFN[to[i]];
    	if(DFN[x]==LOW[x])
    	{
    		int temp;++cnt;
    		do{
    			temp=Stack[Stack_Num--];
    			In_Stack[temp]=0;
    			Be[temp]=cnt;
    		}while(temp!=x);
    	}
    }
    int main()
    {
    	read(n);read(m);read(k);
    	for(register int i=1;i<=m;++i)
    	{
    		int u,v;read(u);read(v);
    		insert(u<<1,v<<1|1);insert(v<<1,u<<1|1);
    	}
    	for(register int i=1;i<=n;++i)insert(i<<1|1,(i+n)<<1|1),insert((i+n)<<1,i<<1);
    	for(register int i=1;i<=k;++i)
    	{
    		int w;read(w);
    		for(register int j=1;j<=w;++j)read(a[j]);
    		for(register int j=2;j<=w;++j)
    		{
    			insert((a[j-1]+n)<<1|1,a[j]<<1);
    			insert(a[j]<<1|1,(a[j-1]+n)<<1);
    			insert((a[j]+n)<<1,(a[j-1]+n)<<1);
    			insert((a[j-1]+n)<<1|1,(a[j]+n)<<1|1);
    		}
    	}
    	for(register int i=2;i<=(n<<2|1);++i)
    		if(!DFN[i])Tarjan(i);
    	for(register int i=2;i<=(n<<2|1);i+=2)
    		if(Be[i]==Be[i^1])
    		{
    			puts("NIE");
    			return 0;
    		}
    	puts("TAK");
    	return 0;
    }
    
  • 相关阅读:
    java实现遍历树形菜单方法——service层
    Es 中一个分片一般设置多大
    Too Many Open Files的错误
    线程池队列满导致错误
    ES正在弱化type这个概念
    更新设置api
    遥控器 静音键 点播键
    Byzantine failures
    TGI指数
    墨菲定律(Murphy's Law)
  • 原文地址:https://www.cnblogs.com/hongyj/p/9544183.html
Copyright © 2020-2023  润新知