• Spark RDD 到 LabelPoint的转换(包含构造临时数据的方法)


    题目: 将数据的某个特征作为label, 其他特征(或其他某几个特征)作为Feature, 转为LabelPoint

    参考: http://www.it1352.com/220642.html

    1. 首先构造数据
    import scala.util.Random.{setSeed, nextDouble}
    setSeed(1)
    
    case class Record(foo: Double, target: Double, x1: Double, x2: Double, x3: Double)
    
    val rows = sc.parallelize(
        (1 to 10).map(_ => Record(
            nextDouble, nextDouble, nextDouble, nextDouble, nextDouble
       ))
    )
    val df = sqlContext.createDataFrame(rows)
    df.registerTempTable("df")
    
    sqlContext.sql("""
      SELECT ROUND(foo, 2) foo,
             ROUND(target, 2) target,
             ROUND(x1, 2) x1,
             ROUND(x2, 2) x2,
             ROUND(x2, 2) x3 
      FROM df""").show
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20

    得到的数据如下:

    +----+------+----+----+----+
    | foo|target|  x1|  x2|  x3|
    +----+------+----+----+----+
    |0.73|  0.41|0.21|0.33|0.33|
    |0.01|  0.96|0.94|0.95|0.95|
    | 0.4|  0.35|0.29|0.51|0.51|
    |0.77|  0.66|0.16|0.38|0.38|
    |0.69|  0.81|0.01|0.52|0.52|
    |0.14|  0.48|0.54|0.58|0.58|
    |0.62|  0.18|0.01|0.16|0.16|
    |0.54|  0.97|0.25|0.39|0.39|
    |0.43|  0.23|0.89|0.04|0.04|
    |0.66|  0.12|0.65|0.98|0.98|
    +----+------+----+----+----+

    假设我们想排除x2和foo, 抽取 LabeledPoint(target, Array(x1, x3)):

    import org.apache.spark.mllib.linalg.{Vector, Vectors}  
    import org.apache.spark.mllib.regression.LabeledPoint 
    
    // Map feature names to indices
    val featInd = List("x1", "x3").map(df.columns.indexOf(_))
    
    // Or if you want to exclude columns
    val ignored = List("foo", "target", "x2")
    val featInd = df.columns.diff(ignored).map(df.columns.indexOf(_))
    
    // Get index of target
    val targetInd = df.columns.indexOf("target") 
    
    df.rdd.map(r => LabeledPoint(
       r.getDouble(targetInd), // Get target value
       // Map feature indices to values
       Vectors.dense(featInd.map(r.getDouble(_)).toArray) 
    ))


    原文转自 http://blog.csdn.net/zrc199021/article/details/53676116

  • 相关阅读:
    jQuery使用经验建议
    java的各种类型转换汇总
    二路归并排序算法实现-完整C语言程序
    Java连接MYSQL 数据库的连接步骤
    二叉树
    bat命令批量创建文件夹
    【转】Android原生PDF功能实现
    【转】Android root检测方法总结
    【转】Android 破解视频App去除广告功能详解及解决办法总结
    【转】什么是微信62数据,62数据脚本有什么用?
  • 原文地址:https://www.cnblogs.com/honey01/p/8044215.html
Copyright © 2020-2023  润新知