• POJ 2391 Ombrophobic Bovines


    Ombrophobic Bovines

     

    Description

    FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter. 

    The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction. 

    Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse. 

    Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

    Input

    * Line 1: Two space-separated integers: F and P 

    * Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i. 

    * Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

    Output

    * Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

    Sample Input

    3 4
    7 2
    0 4
    2 6
    1 2 40
    3 2 70
    2 3 90
    1 3 120

    Sample Output

    110

    Hint

    OUTPUT DETAILS: 

    In 110 time units, two cows from field 1 can get under the shelter in that field, four cows from field 1 can get under the shelter in field 2, and one cow can get to field 3 and join the cows from that field under the shelter in field 3. Although there are other plans that will get all the cows under a shelter, none will do it in fewer than 110 time units.
     
    #include<cstdio>
    #include<vector>
    #include<queue>
    #include<cstring>
    using namespace std;
    typedef long long LL;
    const LL INF=2e12+5;
    const int MAXN=405;
    int has[MAXN],sz[MAXN],F,P,tot;
    LL dis[MAXN][MAXN];
    struct dinic
    {
        struct Edge
        {
            int from,to,cap,flow;
            Edge(){}
            Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){};
        };
        int s,t,d[MAXN],cur[MAXN];
        bool vis[MAXN];
        vector<Edge>edges;
        vector<int>G[MAXN];
        inline void init()
        {
            for(int i=0;i<=2*F+1;i++)G[i].clear();
            edges.clear();
        }
        void addedge(int from,int to,int cap)
        {
            edges.push_back((Edge){from,to,cap,0});
            edges.push_back((Edge){to,from,0,0});
            int m=edges.size();
            G[from].push_back(m-2);
            G[to].push_back(m-1);
        }
        bool bfs()
        {
            memset(vis,0,sizeof(vis));
            queue<int>q;
            q.push(s);
            d[s]=0;
            vis[s]=1;
            while(!q.empty())
            {
                int x=q.front();q.pop();
                for(int i=0;i<G[x].size();i++)
                {
                    Edge& e=edges[G[x][i]];
                    if(!vis[e.to]&&e.cap>e.flow)
                    {
                        vis[e.to]=1;
                        d[e.to]=d[x]+1;
                        q.push(e.to);
                    }
                }
            }
            return vis[t];
        }
        int dfs(int x,int a)
        {
            if(x==t||a==0)return a;
            int flow=0,f;
            for(int& i=cur[x];i<G[x].size();i++)
            {
                Edge& e=edges[G[x][i]];
                if(d[x]+1==d[e.to]&&(f=dfs(e.to,min(a,e.cap-e.flow)))>0)
                {
                    e.flow+=f;
                    edges[G[x][i]^1].flow-=f;
                    flow+=f;
                    a-=f;
                    if(a==0)break;
                }
            }
            return flow;
        }
        int maxflow(int s,int t)
        {
            this->s=s,this->t=t;
            int flow=0;
            while(bfs())
            {
                memset(cur,0,sizeof(cur));
                flow+=dfs(s,2e5+5);
            }
            return flow;
        }
    }dc;
    void floyd()
    {
        for(int k=1;k<=F;k++)
            for(int i=1;i<=F;i++)
                for(int j=1;j<=F;j++)
                    dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
    }
    bool jud(LL T)
    {
        dc.init();
        for(int i=1;i<=F;i++)
            for(int j=1;j<=F;j++)
                if(dis[i][j]<=T)
                    dc.addedge(i,j+F,2e5+5);
        for(int i=1;i<=F;i++)
            dc.addedge(0,i,has[i]),dc.addedge(i+F,2*F+1,sz[i]);
        return tot==dc.maxflow(0,2*F+1);
    }
    int main()
    {
        scanf("%d%d",&F,&P);
        for(int i=1;i<=F;i++)
            scanf("%d%d",&has[i],&sz[i]),tot+=has[i];
        for(int i=1;i<=F;i++)
            for(int j=1;j<=F;j++)
                dis[i][j]=(i==j?0:INF);
        for(int i=1;i<=P;i++)
        {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            dis[u][v]=dis[v][u]=min(dis[u][v],1LL*w);
        }
        floyd();
        LL l=-1,r=INF,ans=-1;
        while(l<r)
        {
            LL mid=(l+r)/2;
            if(jud(mid))ans=r=mid;
            else l=mid+1;
        }
        printf("%lld
    ",ans);
        return 0;
    }
  • 相关阅读:
    特殊方法(双下方法)
    反射
    属性
    类方法、静态方法
    封装
    python接口类,抽象类
    Yii2基本概念之——事件(Event)
    Yii2基本概念之——行为(Behavior)
    yii2 migrate 数据库迁移的简单分享
    Yii2.0 RESTful API 之速率限制
  • 原文地址:https://www.cnblogs.com/homura/p/6078002.html
Copyright © 2020-2023  润新知