网上C++版Biginteger参差不齐,一下子没有找到一个令人满意Biginteger,最近用c++改写了一下C#版 BigInteger,可以用于RSA大素数的生成,分享给大家。也请大家批评指正改的不好的地方。
其中有几个类型未在CPP中:
typedef unsigned char Byte;
#define null 0
typedef unsigned int Uint;
typedef unsigned __int64 Uint64;
//最大长度200 : 200 Uint=200*32=6400位
const int MaxLength=200;
//已知素数长度
const int NumberPrimes=2048;
//素数数组
const int Primes[]={ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263,...17789,17791,17807,17827,17837,17839,17851,17863};
// BigInteger.h: interface for the BigInteger class. // ////////////////////////////////////////////////////////////////////// #if !defined(AFX_BIGINTER_H__2870290C_E65B_46BB_85C1_D05AAA9EDE64__INCLUDED_) #define AFX_BIGINTER_H__2870290C_E65B_46BB_85C1_D05AAA9EDE64__INCLUDED_ #if _MSC_VER > 1000 #pragma once #endif // _MSC_VER > 1000 #include "Random.h"
#include "ConstAndTypeDef.h"
class BigInteger { public: BigInteger(void); BigInteger(Uint64 value); BigInteger(const BigInteger &bi); BigInteger(const Uint inData[],int length); BigInteger(const Uint inData[],int length,bool direct); BigInteger(const Byte inData[],int length); ~BigInteger(); BigInteger Max(const BigInteger &bi); BigInteger Min(const BigInteger &bi); BigInteger Abs(); BigInteger ModPow( BigInteger exp, BigInteger n); BigInteger BarrettReduction(BigInteger x, BigInteger n, BigInteger constant); BigInteger Gcd(const BigInteger &bi); void GenRandomBits(int bits, Random &random); int BitCount(); bool FermatLittleTest(int confidence,Random &random); bool RabinMillerTest(int confidence,Random &random); bool SolovayStrassenTest(int confidence,Random &random); bool LucasStrongTest(); bool IsProbablePrime(int confidence,Random &random); bool IsProbablePrime(); int IntValue(); Uint64 LongValue(); BigInteger GenCoPrime(int bits, Random &random); BigInteger ModInverse(BigInteger modulus); Byte* GetBytes(); void SetBit(Uint bitNum); void UnsetBit(Uint bitNum); BigInteger Sqrt(); int GetBytes(Byte result[],int orgLength); int GetBytesRemovedZero(Byte result[],int orgLength); friend BigInteger operator +(const BigInteger &bi1,const BigInteger &bi2); friend BigInteger operator ++(BigInteger &bi); friend BigInteger operator -(const BigInteger &bi1,const BigInteger &bi2); friend BigInteger operator --(BigInteger &bi); friend BigInteger operator -=(BigInteger &bi1,const BigInteger &bi2); friend BigInteger operator *(BigInteger bi1,BigInteger bi2); friend BigInteger operator -(const BigInteger& bi1); friend BigInteger operator <<(const BigInteger &bi,int offset); friend BigInteger operator >>(const BigInteger &bi,int offset); friend BigInteger operator ~(const BigInteger &bi1); friend bool operator ==(const BigInteger &bi1,const BigInteger &bi2); friend bool operator !=(const BigInteger &bi1,const BigInteger &bi2); friend bool operator >(const BigInteger &bi1,const BigInteger &bi2); friend bool operator <(const BigInteger &bi1, const BigInteger &bi2); friend bool operator >=(const BigInteger &bi1,const BigInteger &bi2); friend bool operator <=(const BigInteger &bi1, const BigInteger &bi2); static void MultiByteDivide(BigInteger bi1, BigInteger bi2, BigInteger& outQuotient, BigInteger& outRemainder); static void SingleByteDivide(BigInteger bi1, BigInteger bi2, BigInteger& outQuotient, BigInteger& outRemainder); friend BigInteger operator /(BigInteger bi1, BigInteger bi2); friend BigInteger operator %(BigInteger bi1, BigInteger bi2); friend BigInteger operator &(const BigInteger& bi1,const BigInteger& bi2); friend BigInteger operator |(const BigInteger& bi1,const BigInteger& bi2); friend BigInteger operator ^(const BigInteger& bi1,const BigInteger& bi2); static int Jacobi(BigInteger a, BigInteger b); static BigInteger GenPseudoPrime(int bits, int confidence, Random &rand); static BigInteger* LucasSequence(BigInteger P, BigInteger Q, BigInteger k, BigInteger n); static BigInteger* LucasSequenceHelper(BigInteger P, BigInteger Q, BigInteger k, BigInteger n, BigInteger constant, int s); static __int64 Abs(__int64 value); private: Uint data[MaxLength];
int dataLength;
void Init(void); static int ShiftLeft( Uint buffer[],int bufLen, int shiftVal); static int ShiftRight( Uint buffer[],int bufLen, int shiftVal); bool LucasStrongTestHelper(BigInteger thisVal); }; #endif // !defined(AFX_BIGINTER_H__2870290C_E65B_46BB_85C1_D05AAA9EDE64__INCLUDED_)
// BigInteger.cpp: implementation of the BigInteger class. // ////////////////////////////////////////////////////////////////////// #include "stdafx.h" #include "BigInter.h" #include <math.h> #include "iostream.h" ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// BigInteger::BigInteger(void) { Init(); dataLength = 1; } BigInteger::BigInteger(Uint64 value) { Init(); dataLength = 0; while (value != 0 && dataLength < MaxLength) { data[dataLength] = (Uint)(value & 0xFFFFFFFF); value =value>> 32; dataLength++; } if (dataLength == 0) { dataLength = 1; } } BigInteger::BigInteger(const BigInteger &bi) { Init(); dataLength = bi.dataLength; for (int i = 0; i < dataLength; i++) { data[i] = bi.data[i]; } } BigInteger::BigInteger(const Uint inData[],int length) { Init(); dataLength = length; if (dataLength > MaxLength) { dataLength=MaxLength; } for (int i = dataLength - 1, j = 0; i >= 0; i--, j++) { data[j] = inData[i]; } while (dataLength > 1 && data[dataLength - 1] == 0) { dataLength--; } } BigInteger::BigInteger(const Uint inData[],int length,bool direct) { Init(); dataLength = length; if (dataLength > MaxLength) { dataLength=MaxLength; } if(direct) { for(int i=0;i<dataLength;i++) { data[i] = inData[i]; } }else { for (int i = dataLength - 1, j = 0; i >= 0; i--, j++) { data[j] = inData[i]; } } while (dataLength > 1 && data[dataLength - 1] == 0) { dataLength--; } } BigInteger::BigInteger(const Byte inData[],int length) { Init(); dataLength = length >> 2; int leftOver =length & 0x3; if (leftOver != 0) // length not multiples of 4 { dataLength++; } if (dataLength > MaxLength) { dataLength=MaxLength; length=dataLength<<2; } for (int i = length - 1, j = 0; i >= 3; i -= 4, j++) { data[j] = (Uint)(((Uint)inData[i - 3] << 24) + ((Uint)inData[i - 2] << 16) + ((Uint)inData[i - 1] << 8) + inData[i]); } if (leftOver == 1) { data[dataLength - 1] = (Uint)inData[0]; } else if (leftOver == 2) { data[dataLength - 1] = (Uint)(((Uint)inData[0] << 8) + inData[1]); } else if (leftOver == 3) { data[dataLength - 1] = (Uint)(((Uint)inData[0] << 16) + ((Uint)inData[1] << 8) + inData[2]); } while (dataLength > 1 && data[dataLength - 1] == 0) { dataLength--; } } BigInteger::~BigInteger(void) { } void BigInteger::Init() { dataLength=0; for(int i=0;i<MaxLength;i++) { data[i]=0u; } } BigInteger operator +(const BigInteger &bi1,const BigInteger &bi2) { BigInteger result; result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; __int64 carry = 0; for (int i = 0; i < result.dataLength; i++) { __int64 sum = (__int64)bi1.data[i] + (__int64)bi2.data[i] + carry; carry = sum >> 32; result.data[i] = (Uint)(sum & 0xFFFFFFFF); } if (carry != 0 && result.dataLength < MaxLength) { result.data[result.dataLength] = (Uint)(carry); result.dataLength++; } while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) result.dataLength--; // overflow /*int lastPos = MaxLength - 1; if ((bi1.data[lastPos] & 0x80000000) == (bi2.data[lastPos] & 0x80000000) && (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) { }*/ return result; } BigInteger operator ++(BigInteger& bi) { __int64 val, carry = 1; int index = 0; while (carry != 0 && index < MaxLength) { val = (__int64)(bi.data[index]); val++; bi.data[index] = (Uint)(val & 0xFFFFFFFF); carry = val >> 32; index++; } if (index > bi.dataLength) bi.dataLength = index; else { while (bi.dataLength > 1 && bi.data[bi.dataLength - 1] == 0) bi.dataLength--; } int lastPos = MaxLength - 1; return bi; } BigInteger operator -(const BigInteger& bi1,const BigInteger& bi2) { BigInteger result; result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; __int64 carryIn = 0; for (int i = 0; i < result.dataLength; i++) { __int64 diff; diff = (__int64)bi1.data[i] - (__int64)bi2.data[i] - carryIn; result.data[i] = (Uint)(diff & 0xFFFFFFFF); if (diff < 0) carryIn = 1; else carryIn = 0; } // roll over to negative if (carryIn != 0) { for (int i = result.dataLength; i < MaxLength; i++) result.data[i] = 0xFFFFFFFF; result.dataLength = MaxLength; } // fixed in v1.03 to give correct datalength for a - (-b) while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) result.dataLength--; // overflow check /*int lastPos = MaxLength - 1; if ((bi1.data[lastPos] & 0x80000000) != (bi2.data[lastPos] & 0x80000000) && (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) { //throw (new ArithmeticException()); } */ return result; } BigInteger operator --(BigInteger &bi) { __int64 val; bool carryIn = true; int index = 0; while (carryIn && index < MaxLength) { val = (__int64)(bi.data[index]); val--; bi.data[index] = (Uint)(val & 0xFFFFFFFF); if (val >= 0) carryIn = false; index++; } if (index > bi.dataLength) bi.dataLength = index; while (bi.dataLength > 1 && bi.data[bi.dataLength - 1] == 0) bi.dataLength--; int lastPos = MaxLength - 1; return bi; } BigInteger operator -=(BigInteger &bi1,const BigInteger &bi2) { bi1=bi1-bi2; return bi1; } BigInteger operator -(const BigInteger& bi1) { if (bi1.dataLength == 1 && bi1.data[0] == 0) { BigInteger result; return result; } BigInteger result(bi1); // 1's complement for (int i = 0; i < MaxLength; i++) { result.data[i] = (Uint)(~(bi1.data[i])); } // add one to result of 1's complement __int64 val, carry = 1; int index = 0; while (carry != 0 && index < MaxLength) { val = (__int64)(result.data[index]); val++; result.data[index] = (Uint)(val & 0xFFFFFFFF); carry = val >> 32; index++; } //Overflow in negation /*if ((bi1.data[MaxLength - 1] & 0x80000000) == (result.data[MaxLength - 1] & 0x80000000)) { }*/ result.dataLength = MaxLength; while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) { result.dataLength--; } return result; } BigInteger operator *(BigInteger bi1,BigInteger bi2) { int lastPos = MaxLength - 1; bool bi1Neg = false, bi2Neg = false; if ((bi1.data[lastPos] & 0x80000000) != 0) // bi1 negative { bi1Neg = true; bi1 = -bi1; } if ((bi2.data[lastPos] & 0x80000000) != 0) // bi2 negative { bi2Neg = true; bi2 = -bi2; } BigInteger result; for (int i = 0; i < bi1.dataLength; i++) { if (bi1.data[i] == 0) continue; Uint64 mcarry = 0; for (int j = 0, k = i; j < bi2.dataLength; j++, k++) { // k = i + j Uint64 val = ((Uint64)bi1.data[i] * (Uint64)bi2.data[j]) + (Uint64)result.data[k] + mcarry; result.data[k] = (Uint)(val & 0xFFFFFFFF); mcarry = (val >> 32); } if (mcarry != 0) { result.data[i + bi2.dataLength] = (Uint)mcarry; } } result.dataLength = bi1.dataLength + bi2.dataLength; if (result.dataLength > MaxLength) result.dataLength = MaxLength; while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) result.dataLength--; // overflow check (result is -ve) if ((result.data[lastPos] & 0x80000000) != 0) { if (bi1Neg != bi2Neg && result.data[lastPos] == 0x80000000) // different sign { // handle the special case where multiplication produces // a max negative number in 2's complement. if (result.dataLength == 1) return result; else { bool isMaxNeg = true; for (int i = 0; i < result.dataLength - 1 && isMaxNeg; i++) { if (result.data[i] != 0) isMaxNeg = false; } if (isMaxNeg) return result; } }else { //Multiplication overflow } } // if input has different signs, then result is -ve if (bi1Neg != bi2Neg) return -result; return result; } BigInteger operator <<(const BigInteger &bi1, int offset) { BigInteger result=BigInteger(bi1); if(offset==0) { return result; } result.dataLength = BigInteger::ShiftLeft(result.data,result.dataLength, offset); return result; } BigInteger operator >>(const BigInteger &bi1, int shiftVal) { BigInteger result(bi1); if(shiftVal==0) { return result; } result.dataLength = BigInteger::ShiftRight(result.data,result.dataLength, shiftVal); int i=0; if ((bi1.data[MaxLength - 1] & 0x80000000) != 0) // negative { for ( i = MaxLength - 1; i >= result.dataLength; i--) result.data[i] = 0xFFFFFFFF; Uint mask = 0x80000000; for (i = 0; i < 32; i++) { if ((result.data[result.dataLength - 1] & mask) != 0) break; result.data[result.dataLength - 1] |= mask; mask >>= 1; } result.dataLength = MaxLength; } return result; } int BigInteger::ShiftLeft(Uint buffer[],int bufLen, int shiftVal) { int shiftAmount = 32; int index=bufLen; while (index > 1 && buffer[index - 1] == 0) { index--; } for (int count = shiftVal; count > 0; ) { if (count < shiftAmount) { shiftAmount = count; } Uint64 carry = 0; for (int i = 0; i < index; i++) { Uint64 val = ((Uint64)buffer[i]) << shiftAmount; val |= carry; buffer[i] = (Uint)(val & 0xFFFFFFFF); carry = val >> 32; } if (carry != 0) { if (index + 1 <=bufLen) { buffer[index] = (Uint)carry; index++; } } count -= shiftAmount; } return index; } int BigInteger::ShiftRight( Uint buffer[],int bufLen, int shiftVal) { int shiftAmount = 32; int invShift = 0; while (bufLen > 1 && buffer[bufLen - 1] == 0) bufLen--; for (int count = shiftVal; count > 0; ) { if (count < shiftAmount) { shiftAmount = count; invShift = 32 - shiftAmount; } Uint64 carry = 0; for (int i = bufLen - 1; i >= 0; i--) { Uint64 val = ((Uint64)buffer[i]) >> shiftAmount; val |= carry; carry = ((Uint64)buffer[i]) << invShift; buffer[i] = (Uint)(val); } count -= shiftAmount; } while (bufLen > 1 && buffer[bufLen - 1] == 0) bufLen--; return bufLen; } BigInteger operator ~(const BigInteger &bi) { BigInteger result(bi); for (int i = 0; i < MaxLength; i++) { result.data[i] = (Uint)(~(bi.data[i])); } result.dataLength = MaxLength; while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) { result.dataLength--; } return result; } bool operator ==(const BigInteger &bi1,const BigInteger &bi2) { if(bi1.dataLength!=bi2.dataLength) { return false; } for(int i=0;i<bi1.dataLength;i++) { if(bi1.data[i]!=bi2.data[i]) { return false; } } return true; } bool operator !=(const BigInteger &bi1,const BigInteger &bi2) { if(bi1.dataLength!=bi2.dataLength) { return true; } for(int i=0;i<bi1.dataLength;i++) { if(bi1.data[i]!=bi2.data[i]) { return true; } } return false; } bool operator >(const BigInteger &bi1,const BigInteger &bi2) { int pos = MaxLength - 1; // bi1 is negative, bi2 is positive if ((bi1.data[pos] & 0x80000000) != 0 && (bi2.data[pos] & 0x80000000) == 0) return false; // bi1 is positive, bi2 is negative else if ((bi1.data[pos] & 0x80000000) == 0 && (bi2.data[pos] & 0x80000000) != 0) return true; // same sign int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; for (pos = len - 1; pos >= 0 && bi1.data[pos] == bi2.data[pos]; pos--) ; if (pos >= 0) { if (bi1.data[pos] > bi2.data[pos]) { return true; }else { return false; } } return false; } bool operator <(const BigInteger &bi1, const BigInteger &bi2) { int pos = MaxLength - 1; // bi1 is negative, bi2 is positive if ((bi1.data[pos] & 0x80000000) != 0 && (bi2.data[pos] & 0x80000000) == 0) return true; // bi1 is positive, bi2 is negative else if ((bi1.data[pos] & 0x80000000) == 0 && (bi2.data[pos] & 0x80000000) != 0) return false; // same sign int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; for (pos = len - 1; pos >= 0 && bi1.data[pos] == bi2.data[pos]; pos--) ; if (pos >= 0) { if (bi1.data[pos] < bi2.data[pos]) { return true; }else { return false; } } return false; } bool operator >=(const BigInteger &bi1,const BigInteger &bi2) { return (bi1 == bi2 || bi1 > bi2); } bool operator <=(const BigInteger &bi1, const BigInteger &bi2) { return (bi1 == bi2 || bi1 < bi2); } void BigInteger::MultiByteDivide(BigInteger bi1, BigInteger bi2, BigInteger &outQuotient, BigInteger& outRemainder) { int i=0; Uint result[MaxLength]; for( i=0;i<MaxLength;i++) { result[i]=0; } int remainderLen = bi1.dataLength + 1; Uint* remainder=new Uint[remainderLen]; for( i=0;i<remainderLen;i++) { remainder[i]=0; } Uint mask = 0x80000000; Uint val = bi2.data[bi2.dataLength - 1]; int shift = 0, resultPos = 0; while (mask != 0 && (val & mask) == 0) { shift++; mask >>= 1; } for ( i = 0; i < bi1.dataLength; i++) { remainder[i] = bi1.data[i]; } BigInteger::ShiftLeft(remainder,remainderLen, shift); bi2 = bi2 << shift; int j = remainderLen - bi2.dataLength; int pos = remainderLen - 1; Uint64 firstDivisorByte = bi2.data[bi2.dataLength - 1]; Uint64 secondDivisorByte = bi2.data[bi2.dataLength - 2]; int divisorLen = bi2.dataLength + 1; Uint* dividendPart=new Uint[divisorLen]; for(i=0;i<divisorLen;i++) { dividendPart[i]=0; } while (j > 0) { Uint64 dividend = ((Uint64)remainder[pos] << 32) + (Uint64)remainder[pos - 1]; Uint64 q_hat = dividend / firstDivisorByte; Uint64 r_hat = dividend % firstDivisorByte; bool done = false; while (!done) { done = true; if (q_hat == 0x100000000 || (q_hat * secondDivisorByte) > ((r_hat << 32) + remainder[pos - 2])) { q_hat--; r_hat += firstDivisorByte; if (r_hat < 0x100000000) done = false; } } int h =0; for ( h = 0; h < divisorLen; h++) dividendPart[h] = remainder[pos - h]; BigInteger kk(dividendPart,divisorLen); BigInteger ss = bi2 * (__int64)q_hat; while (ss > kk) { q_hat--; ss -= bi2; } BigInteger yy = kk - ss; for ( h = 0; h < divisorLen; h++) remainder[pos - h] = yy.data[bi2.dataLength - h]; result[resultPos++] = (Uint)q_hat; pos--; j--; } outQuotient.dataLength = resultPos; int y = 0; for (int x = outQuotient.dataLength - 1; x >= 0; x--, y++) outQuotient.data[y] = result[x]; for (; y < MaxLength; y++) outQuotient.data[y] = 0; while (outQuotient.dataLength > 1 && outQuotient.data[outQuotient.dataLength - 1] == 0) outQuotient.dataLength--; if (outQuotient.dataLength == 0) outQuotient.dataLength = 1; outRemainder.dataLength = BigInteger::ShiftRight(remainder,remainderLen, shift); for (y = 0; y < outRemainder.dataLength; y++) outRemainder.data[y] = remainder[y]; for (; y < MaxLength; y++) outRemainder.data[y] = 0; if(remainder!=0) { delete remainder; } if(dividendPart!=0) { delete dividendPart; } } void BigInteger::SingleByteDivide(BigInteger bi1, BigInteger bi2, BigInteger& outQuotient, BigInteger& outRemainder) { Uint result[MaxLength]; int resultPos = 0; int i = 0; int j = 0; // copy dividend to reminder for ( i = 0; i < MaxLength; i++) outRemainder.data[i] = bi1.data[i]; outRemainder.dataLength = bi1.dataLength; while (outRemainder.dataLength > 1 && outRemainder.data[outRemainder.dataLength - 1] == 0) outRemainder.dataLength--; Uint64 divisor = (Uint64)bi2.data[0]; int pos = outRemainder.dataLength - 1; Uint64 dividend = (Uint64)outRemainder.data[pos]; if (dividend >= divisor) { Uint64 quotient = dividend / divisor; result[resultPos++] = (Uint)quotient; outRemainder.data[pos] = (Uint)(dividend % divisor); } pos--; while (pos >= 0) { dividend = ((Uint64)outRemainder.data[pos + 1] << 32) + (Uint64)outRemainder.data[pos]; Uint64 quotient = dividend / divisor; result[resultPos++] = (Uint)quotient; outRemainder.data[pos + 1] = 0; outRemainder.data[pos--] = (Uint)(dividend % divisor); } outQuotient.dataLength = resultPos; for ( i = outQuotient.dataLength - 1; i >= 0; i--, j++) outQuotient.data[j] = result[i]; for (; j < MaxLength; j++) outQuotient.data[j] = 0; while (outQuotient.dataLength > 1 && outQuotient.data[outQuotient.dataLength - 1] == 0) outQuotient.dataLength--; if (outQuotient.dataLength == 0) outQuotient.dataLength = 1; while (outRemainder.dataLength > 1 && outRemainder.data[outRemainder.dataLength - 1] == 0) outRemainder.dataLength--; } BigInteger operator /(BigInteger bi1,BigInteger bi2) { BigInteger quotient; BigInteger remainder; int lastPos = MaxLength - 1; bool divisorNeg = false, dividendNeg = false; if ((bi1.data[lastPos] & 0x80000000) != 0) // bi1 negative { bi1 = -bi1; dividendNeg = true; } if ((bi2.data[lastPos] & 0x80000000) != 0) // bi2 negative { bi2 = -bi2; divisorNeg = true; } if (bi1 < bi2) { return quotient; } else { if (bi2.dataLength == 1) BigInteger::SingleByteDivide(bi1, bi2, quotient, remainder); else BigInteger::MultiByteDivide(bi1, bi2, quotient, remainder); if (dividendNeg != divisorNeg) return -quotient; return quotient; } } BigInteger operator %(BigInteger bi1, BigInteger bi2) { BigInteger quotient; BigInteger remainder(bi1); int lastPos = MaxLength - 1; bool dividendNeg = false; if ((bi1.data[lastPos] & 0x80000000) != 0) // bi1 negative { bi1 = -bi1; dividendNeg = true; } if ((bi2.data[lastPos] & 0x80000000) != 0) // bi2 negative bi2 = -bi2; if (bi1 < bi2) { return remainder; } else { if (bi2.dataLength == 1) BigInteger::SingleByteDivide(bi1, bi2, quotient, remainder); else BigInteger::MultiByteDivide(bi1, bi2, quotient, remainder); if (dividendNeg) return -remainder; return remainder; } } BigInteger operator &(const BigInteger &bi1,const BigInteger &bi2) { BigInteger result; int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; for (int i = 0; i < len; i++) { Uint sum = (Uint)(bi1.data[i] & bi2.data[i]); result.data[i] = sum; } result.dataLength = MaxLength; while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) result.dataLength--; return result; } BigInteger operator |(const BigInteger& bi1,const BigInteger& bi2) { BigInteger result; int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; for (int i = 0; i < len; i++) { Uint sum = (Uint)(bi1.data[i] | bi2.data[i]); result.data[i] = sum; } result.dataLength = MaxLength; while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) result.dataLength--; return result; } BigInteger operator ^(const BigInteger& bi1,const BigInteger& bi2) { BigInteger result; int len = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; for (int i = 0; i < len; i++) { Uint sum = (Uint)(bi1.data[i] ^ bi2.data[i]); result.data[i] = sum; } result.dataLength = MaxLength; while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0) result.dataLength--; return result; } int BigInteger::Jacobi(BigInteger a, BigInteger b) { if ((b.data[0] & 0x1) == 0) { //Exception::Jacobi defined only for odd integers } if (a >= b) a=a % b; if (a.dataLength == 1 && a.data[0] == 0) return 0; // a == 0 if (a.dataLength == 1 && a.data[0] == 1) return 1; // a == 1 if (a < BigInteger()) { if ((((b - 1).data[0]) & 0x2) == 0) //if( (((b-1) >> 1).data[0] & 0x1) == 0) return Jacobi(-a, b); else return -Jacobi(-a, b); } int e = 0; for (int index = 0; index < a.dataLength; index++) { Uint mask = 0x01; for (int i = 0; i < 32; i++) { if ((a.data[index] & mask) != 0) { index = a.dataLength; // to break the outer loop break; } mask <<= 1; e++; } } BigInteger a1 = a >> e; int s = 1; if ((e & 0x1) != 0 && ((b.data[0] & 0x7) == 3 || (b.data[0] & 0x7) == 5)) s = -1; if ((b.data[0] & 0x3) == 3 && (a1.data[0] & 0x3) == 3) s = -s; if (a1.dataLength == 1 && a1.data[0] == 1) return s; else return (s * Jacobi(b % a1, a1)); } BigInteger BigInteger::GenPseudoPrime(int bits, int confidence,Random &random) { BigInteger result; bool done = false; while (!done) { result.GenRandomBits(bits,random); result.data[0] |= 0x01; // make it odd // prime test done = result.IsProbablePrime(confidence,random); } return result; } BigInteger* BigInteger::LucasSequence(BigInteger P, BigInteger Q, BigInteger k, BigInteger n) { if (k.dataLength == 1 && k.data[0] == 0) { BigInteger* result = new BigInteger[3]; result[0] =BigInteger(); result[1] = BigInteger(2) % n; result[2] = BigInteger(1) % n; return result; } // calculate constant = b^(2k) / m // for Barrett Reduction BigInteger constant; int nLen = n.dataLength << 1; constant.data[nLen] = 0x00000001; constant.dataLength = nLen + 1; constant = constant / n; // calculate values of s and t int s = 0; for (int index = 0; index < k.dataLength; index++) { Uint mask = 0x01; for (int i = 0; i < 32; i++) { if ((k.data[index] & mask) != 0) { index = k.dataLength; // to break the outer loop break; } mask <<= 1; s++; } } BigInteger t = k >> s; return LucasSequenceHelper(P, Q, t, n, constant, s); } BigInteger* BigInteger::LucasSequenceHelper(BigInteger P, BigInteger Q, BigInteger k, BigInteger n, BigInteger constant, int s) { int i=0; BigInteger* result = new BigInteger[3]; for(i=0;i<3;i++) { result[i]=0; } if ((k.data[0] & 0x00000001) == 0) { //Exception::"Argument k must be odd." } int numbits = k.BitCount(); Uint mask = (Uint)0x1 << ((numbits & 0x1F) - 1); // v = v0, v1 = v1, u1 = u1, Q_k = Q^0 BigInteger v = 2 % n, Q_k = 1 % n, v1 = P % n, u1 = Q_k; bool flag = true; for ( i = k.dataLength - 1; i >= 0; i--) // iterate on the binary expansion of k { while (mask != 0) { if (i == 0 && mask == 0x00000001) // last bit break; if ((k.data[i] & mask) != 0) // bit is set { // index doubling with addition u1 = (u1 * v1) % n; v = ((v * v1) - (P * Q_k)) % n; v1 = n.BarrettReduction(v1 * v1, n, constant); v1 = (v1 - ((Q_k * Q) << 1)) % n; if (flag) flag = false; else Q_k = n.BarrettReduction(Q_k * Q_k, n, constant); Q_k = (Q_k * Q) % n; } else { // index doubling u1 = ((u1 * v) - Q_k) % n; v1 = ((v * v1) - (P * Q_k)) % n; v = n.BarrettReduction(v * v, n, constant); v = (v - (Q_k << 1)) % n; if (flag) { Q_k = Q % n; flag = false; } else Q_k = n.BarrettReduction(Q_k * Q_k, n, constant); } mask >>= 1; } mask = 0x80000000; } // at this point u1 = u(n+1) and v = v(n) // since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1) u1 = ((u1 * v) - Q_k) % n; v = ((v * v1) - (P * Q_k)) % n; if (flag) flag = false; else Q_k = n.BarrettReduction(Q_k * Q_k, n, constant); Q_k = (Q_k * Q) % n; for ( i = 0; i < s; i++) { // index doubling u1 = (u1 * v) % n; v = ((v * v) - (Q_k << 1)) % n; if (flag) { Q_k = Q % n; flag = false; } else Q_k = n.BarrettReduction(Q_k * Q_k, n, constant); } result[0] = u1; result[1] = v; result[2] = Q_k; return result; } bool BigInteger::LucasStrongTestHelper(BigInteger thisVal) { __int64 D = 5, sign = -1, dCount = 0; bool done = false; while (!done) { int Jresult = BigInteger::Jacobi(D, thisVal); if (Jresult == -1) done = true; // J(D, this) = 1 else { if ((Jresult == 0) && (BigInteger::Abs(D) < thisVal)) // divisor found return false; if (dCount == 20) { // check for square BigInteger root = thisVal.Sqrt(); if (root * root == thisVal) return false; } D = (BigInteger::Abs(D) + 2) * sign; sign = -sign; } dCount++; } __int64 Q = (1 - D) >> 2; BigInteger p_add1 = thisVal + 1; int s = 0; for (int index = 0; index < p_add1.dataLength; index++) { Uint mask = 0x01; for (int i = 0; i < 32; i++) { if ((p_add1.data[index] & mask) != 0) { index = p_add1.dataLength; // to break the outer loop break; } mask <<= 1; s++; } } BigInteger t = p_add1 >> s; // calculate constant = b^(2k) / m // for Barrett Reduction BigInteger constant; int nLen = thisVal.dataLength << 1; constant.data[nLen] = 0x00000001; constant.dataLength = nLen + 1; constant = constant / thisVal; BigInteger* lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0); bool isPrime = false; if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) || (lucas[1].dataLength == 1 && lucas[1].data[0] == 0)) { // u(t) = 0 or V(t) = 0 isPrime = true; } for (int i = 1; i < s; i++) { if (!isPrime) { // doubling of index lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant); lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal; //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal; if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0)) isPrime = true; } lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant); //Q^k } if (isPrime) // additional checks for composite numbers { // If n is prime and gcd(n, Q) == 1, then // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n BigInteger g = thisVal.Gcd(Q); if (g.dataLength == 1 && g.data[0] == 1) // gcd(this, Q) == 1 { if ((lucas[2].data[MaxLength - 1] & 0x80000000) != 0) lucas[2] =lucas[2] + thisVal; BigInteger temp = (Q * BigInteger::Jacobi(Q, thisVal)) % thisVal; if ((temp.data[MaxLength - 1] & 0x80000000) != 0) temp = temp+thisVal; if (lucas[2] != temp) isPrime = false; } } if(lucas!=0) { delete lucas; } return isPrime; } BigInteger BigInteger::Max(const BigInteger &bi) { if (*this > bi) return BigInteger(*this); else return BigInteger(bi); } BigInteger BigInteger::Min(const BigInteger &bi) { if (*this < bi) return BigInteger(*this); else return BigInteger(bi); } BigInteger BigInteger::Abs() { if ((this->data[MaxLength - 1] & 0x80000000) != 0) return -(*this); else return BigInteger(*this); } BigInteger BigInteger::ModPow(BigInteger exp, BigInteger n) { if ((exp.data[MaxLength - 1] & 0x80000000) != 0) { //Exception::"Positive exponents only." } BigInteger resultNum = 1; BigInteger tempNum; bool thisNegative = false; if ((this->data[MaxLength - 1] & 0x80000000) != 0) // negative this { tempNum = (-(*this)) % n; thisNegative = true; } else tempNum = (*this) % n; // ensures (tempNum * tempNum) < b^(2k) if ((n.data[MaxLength - 1] & 0x80000000) != 0) // negative n n = -n; // calculate constant = b^(2k) / m BigInteger constant; int i = n.dataLength << 1; constant.data[i] = 0x00000001; constant.dataLength = i + 1; constant = constant / n; int totalBits = exp.BitCount(); int count = 0; // perform squaring and multiply exponentiation for (int pos = 0; pos < exp.dataLength; pos++) { Uint mask = 0x01; for (int index = 0; index < 32; index++) { if ((exp.data[pos] & mask) != 0) resultNum = BarrettReduction(resultNum * tempNum, n, constant); mask <<= 1; tempNum = BarrettReduction(tempNum * tempNum, n, constant); if (tempNum.dataLength == 1 && tempNum.data[0] == 1) { if (thisNegative && (exp.data[0] & 0x1) != 0) //odd exp return -resultNum; return resultNum; } count++; if (count == totalBits) break; } } if (thisNegative && (exp.data[0] & 0x1) != 0) //odd exp return -resultNum; return resultNum; } BigInteger BigInteger::BarrettReduction(BigInteger x, BigInteger n, BigInteger constant) { int k = n.dataLength, kPlusOne = k + 1, kMinusOne = k - 1; int i =0,j=0; BigInteger q1; // q1 = x / b^(k-1) for ( i = kMinusOne, j = 0; i < x.dataLength; i++, j++) q1.data[j] = x.data[i]; q1.dataLength = x.dataLength - kMinusOne; if (q1.dataLength <= 0) q1.dataLength = 1; BigInteger q2 = q1 * constant; BigInteger q3; // q3 = q2 / b^(k+1) for (i = kPlusOne, j = 0; i < q2.dataLength; i++, j++) q3.data[j] = q2.data[i]; q3.dataLength = q2.dataLength - kPlusOne; if (q3.dataLength <= 0) q3.dataLength = 1; // r1 = x mod b^(k+1) // i.e. keep the lowest (k+1) words BigInteger r1 ; int lengthToCopy = (x.dataLength > kPlusOne) ? kPlusOne : x.dataLength; for ( i = 0; i < lengthToCopy; i++) r1.data[i] = x.data[i]; r1.dataLength = lengthToCopy; // r2 = (q3 * n) mod b^(k+1) // partial multiplication of q3 and n BigInteger r2; for ( i = 0; i < q3.dataLength; i++) { if (q3.data[i] == 0) continue; Uint64 mcarry = 0; int t = i; for (int j = 0; j < n.dataLength && t < kPlusOne; j++, t++) { // t = i + j Uint64 val = ((Uint64)q3.data[i] * (Uint64)n.data[j]) + (Uint64)r2.data[t] + mcarry; r2.data[t] = (Uint)(val & 0xFFFFFFFF); mcarry = (val >> 32); } if (t < kPlusOne) r2.data[t] = (Uint)mcarry; } r2.dataLength = kPlusOne; while (r2.dataLength > 1 && r2.data[r2.dataLength - 1] == 0) r2.dataLength--; r1 -= r2; if ((r1.data[MaxLength - 1] & 0x80000000) != 0) // negative { BigInteger val; val.data[kPlusOne] = 0x00000001; val.dataLength = kPlusOne + 1; r1 =r1+ val; } while (r1 >= n) r1 -= n; return r1; } BigInteger BigInteger::Gcd(const BigInteger &bi) { BigInteger x; BigInteger y; if ((data[MaxLength - 1] & 0x80000000) != 0) // negative x = -(*this); else x = *this; if ((bi.data[MaxLength - 1] & 0x80000000) != 0) // negative y = -bi; else y = bi; BigInteger g = y; while (x.dataLength > 1 || (x.dataLength == 1 && x.data[0] != 0)) { g = x; x = y % x; y = g; } return g; } void BigInteger::GenRandomBits(int bits,Random &random) { int dwords = bits >> 5; int remBits = bits & 0x1F; int i = 0; if (remBits != 0) dwords++; if (dwords > MaxLength) { //Exception::"Number of required bits > maxLength." } for (i = 0; i < dwords; i++) { data[i]=random.NextUint(); } for (i = dwords; i < MaxLength; i++) data[i] = 0; if (remBits != 0) { Uint mask = (Uint)(0x01 << (remBits - 1)); data[dwords - 1] |= mask; mask = (Uint)(0xFFFFFFFF >> (32 - remBits)); data[dwords - 1] &= mask; } else data[dwords - 1] |= 0x80000000; dataLength = dwords; if (dataLength == 0) dataLength = 1; } int BigInteger::BitCount() { while (dataLength > 1 && data[dataLength - 1] == 0) { dataLength--; } Uint value = data[dataLength - 1]; Uint mask = 0x80000000; int bits = 32; while (bits > 0 && (value & mask) == 0) { bits--; mask >>= 1; } bits += ((dataLength - 1) << 5); return bits; } bool BigInteger::FermatLittleTest(int confidence,Random &random) { BigInteger thisVal; if ((this->data[MaxLength - 1] & 0x80000000) != 0) // negative thisVal = -(*this); else thisVal = *this; if (thisVal.dataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) return false; else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) return true; } if ((thisVal.data[0] & 0x1) == 0) // even numbers return false; int bits = thisVal.BitCount(); BigInteger a; BigInteger p_sub1 = thisVal - BigInteger(1); for (int round = 0; round < confidence; round++) { bool done = false; while (!done) // generate a < n { int testBits = 0; // make sure "a" has at least 2 bits testBits=random.NextValue(2,bits-1); a.GenRandomBits(testBits,random); int byteLen = a.dataLength; // make sure "a" is not 0 if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) done = true; } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.Gcd(thisVal); if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1) return false; // calculate a^(p-1) mod p BigInteger expResult = a.ModPow(p_sub1, thisVal); int resultLen = expResult.dataLength; // is NOT prime is a^(p-1) mod p != 1 if (resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1)) { return false; } } return true; } bool BigInteger::RabinMillerTest(int confidence,Random &random) { BigInteger thisVal; if ((this->data[MaxLength - 1] & 0x80000000) != 0) // negative thisVal = -(*this); else thisVal = *this; if (thisVal.dataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) return false; else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) return true; } if ((thisVal.data[0] & 0x1) == 0) // even numbers return false; // calculate values of s and t BigInteger p_sub1 = thisVal - BigInteger(1); int s = 0; for (int index = 0; index < p_sub1.dataLength; index++) { Uint mask = 0x01; for (int i = 0; i < 32; i++) { if ((p_sub1.data[index] & mask) != 0) { index = p_sub1.dataLength; // to break the outer loop break; } mask <<= 1; s++; } } BigInteger t = p_sub1 >> s; int bits = thisVal.BitCount(); BigInteger a; for (int round = 0; round < confidence; round++) { bool done = false; while (!done) // generate a < n { int testBits = 0; //make sure "a" has at least 2 bits testBits = random.NextValue(2,bits-1); a.GenRandomBits(testBits,random); int byteLen = a.dataLength; // make sure "a" is not 0 if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) done = true; } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.Gcd(thisVal); if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1) return false; BigInteger b = a.ModPow(t, thisVal); bool result = false; if (b.dataLength == 1 && b.data[0] == 1) // a^t mod p = 1 result = true; for (int j = 0; result == false && j < s; j++) { if (b == p_sub1) // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 { result = true; break; } b = (b * b) % thisVal; } if (result == false) return false; } return true; } bool BigInteger::SolovayStrassenTest(int confidence,Random &random) { BigInteger thisVal; if ((this->data[MaxLength - 1] & 0x80000000) != 0) // negative thisVal = -(*this); else thisVal = (*this); if (thisVal.dataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) return false; else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) return true; } if ((thisVal.data[0] & 0x1) == 0) // even numbers return false; int bits = thisVal.BitCount(); BigInteger a ; BigInteger p_sub1 = thisVal - 1; BigInteger p_sub1_shift = p_sub1 >> 1; //Random rand; for (int round = 0; round < confidence; round++) { bool done = false; while (!done) // generate a < n { int testBits = 0; // make sure "a" has at least 2 bits testBits=random.NextValue(2,bits-1); a.GenRandomBits(testBits,random); int byteLen = a.dataLength; // make sure "a" is not 0 if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) done = true; } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.Gcd(thisVal); if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1) return false; // calculate a^((p-1)/2) mod p BigInteger expResult = a.ModPow(p_sub1_shift, thisVal); if (expResult == p_sub1) expResult = -1; // calculate Jacobi symbol BigInteger jacob = Jacobi(a, thisVal); // if they are different then it is not prime if (expResult != jacob) return false; } return true; } bool BigInteger::LucasStrongTest() { BigInteger thisVal; if ((this->data[MaxLength - 1] & 0x80000000) != 0) // negative thisVal = -(*this); else thisVal = *this; if (thisVal.dataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) return false; else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) return true; } if ((thisVal.data[0] & 0x1) == 0) // even numbers return false; return LucasStrongTestHelper(thisVal); } bool BigInteger::IsProbablePrime(int confidence,Random &random) { BigInteger thisVal; if ((this->data[MaxLength - 1] & 0x80000000) != 0) // negative thisVal = -(*this); else thisVal = *this; // test for divisibility by primes for (int p = 0; p < NumberPrimes; p++) { BigInteger divisor = Primes[p]; if (divisor >= thisVal) break; BigInteger resultNum = thisVal % divisor; if (resultNum.IntValue() == 0) { return false; } } if (thisVal.RabinMillerTest(confidence,random)) { return true; } else { return false; } } bool BigInteger::IsProbablePrime() { BigInteger thisVal; if ((this->data[MaxLength - 1] & 0x80000000) != 0) // negative thisVal = -(*this); else thisVal = (*this); if (thisVal.dataLength == 1) { // test small numbers if (thisVal.data[0] == 0 || thisVal.data[0] == 1) return false; else if (thisVal.data[0] == 2 || thisVal.data[0] == 3) return true; } if ((thisVal.data[0] & 0x1) == 0) // even numbers return false; // test for divisibility by primes < 2000 for (int p = 0; p <NumberPrimes; p++) { BigInteger divisor = Primes[p]; if (divisor >= thisVal) break; BigInteger resultNum = thisVal % divisor; if (resultNum.IntValue() == 0) { return false; } } // Perform BASE 2 Rabin-Miller Test // calculate values of s and t BigInteger p_sub1 = thisVal - BigInteger(1); int s = 0; for (int index = 0; index < p_sub1.dataLength; index++) { Uint mask = 0x01; for (int i = 0; i < 32; i++) { if ((p_sub1.data[index] & mask) != 0) { index = p_sub1.dataLength; // to break the outer loop break; } mask <<= 1; s++; } } BigInteger t = p_sub1 >> s; int bits = thisVal.BitCount(); BigInteger a = 2; // b = a^t mod p BigInteger b = a.ModPow(t, thisVal); bool result = false; if (b.dataLength == 1 && b.data[0] == 1) // a^t mod p = 1 result = true; for (int j = 0; result == false && j < s; j++) { if (b == p_sub1) // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 { result = true; break; } b = (b * b) % thisVal; } // if number is strong pseudoprime to base 2, then do a strong lucas test if (result) result = LucasStrongTestHelper(thisVal); return result; } int BigInteger::IntValue() { return (int)data[0]; } Uint64 BigInteger::LongValue() { Uint64 val = 0; val = (Uint64)data[0]; val |= (Uint64)data[1] << 32; return val; } BigInteger BigInteger::GenCoPrime(int bits, Random &rand) { bool done = false; BigInteger result; while (!done) { result.GenRandomBits(bits, rand); // gcd test BigInteger g = result.Gcd(*this); if (g.dataLength == 1 && g.data[0] == 1) done = true; } return result; } BigInteger BigInteger::ModInverse(BigInteger modulus) { BigInteger p[2] = { BigInteger(), BigInteger(1) }; BigInteger q[2]={0,0}; // quotients BigInteger r[2] = {BigInteger(),BigInteger() }; // remainders int step = 0; BigInteger a = modulus; BigInteger b = *this; while (b.dataLength > 1 || (b.dataLength == 1 && b.data[0] != 0)) { BigInteger quotient; BigInteger remainder; if (step > 1) { BigInteger pval = (p[0] - (p[1] * q[0])) % modulus; p[0] = p[1]; p[1] = pval; } if (b.dataLength == 1) SingleByteDivide(a, b, quotient, remainder); else MultiByteDivide(a, b, quotient, remainder); q[0] = q[1]; r[0] = r[1]; q[1] = quotient; r[1] = remainder; a = b; b = remainder; step++; } if (r[0].dataLength > 1 || (r[0].dataLength == 1 && r[0].data[0] != 1)) { //Exception::"No inverse!" } BigInteger result = ((p[0] - (p[1] * q[0])) % modulus); if ((result.data[MaxLength - 1] & 0x80000000) != 0) result =result+ modulus; // get the least positive modulus return result; } Byte* BigInteger::GetBytes() { int numBytes = dataLength << 2; int i=0; Byte* result = new Byte[numBytes]; for(i=0;i<numBytes;i++) { result[i]=0; } int pos = 0; Uint val = 0; for ( i = dataLength -1; i >= 0; i--, pos += 4) { val = data[i]; result[pos + 3] = (Byte)(val & 0xFF); val >>= 8; result[pos + 2] = (Byte)(val & 0xFF); val >>= 8; result[pos + 1] = (Byte)(val & 0xFF); val >>= 8; result[pos] = (Byte)(val & 0xFF); } return result; } int BigInteger::GetBytes(Byte result[],int orgLength) { int numBytes = dataLength << 2; int i=0; if(orgLength<numBytes) { return -1; } for(i=0;i<orgLength;i++) { result[i]=0; } int pos = 0; Uint val = 0; for ( i = dataLength -1; i >= 0; i--, pos += 4) { val = data[i]; result[pos + 3] = (Byte)(val & 0xFF); val >>= 8; result[pos + 2] = (Byte)(val & 0xFF); val >>= 8; result[pos + 1] = (Byte)(val & 0xFF); val >>= 8; result[pos] = (Byte)(val & 0xFF); } return numBytes; } int BigInteger::GetBytesRemovedZero(Byte result[],int orgLength) { int numBits = BitCount(); int i=0; int numBytes = numBits >> 3; if ((numBits & 0x7) != 0) numBytes++; for(i=0;i<orgLength;i++) { result[i]=0; } int pos = 0; Uint val = data[dataLength - 1]; bool isHaveData = false; Uint tempVal = (val >> 24 & 0xFF); if (tempVal != 0) { result[pos++] = (Byte)tempVal; isHaveData = true; } tempVal = (val >> 16 & 0xFF); if (isHaveData || tempVal != 0) { result[pos++] = (Byte)tempVal; isHaveData = true; } tempVal = (val >> 8 & 0xFF); if (isHaveData || tempVal != 0) { result[pos++] = (Byte)tempVal; isHaveData = true; } tempVal = (val & 0xFF); if (isHaveData || tempVal != 0) { result[pos++] = (Byte)tempVal; } for ( i = dataLength - 2; i >= 0; i--, pos += 4) { val = data[i]; result[pos + 3] = (Byte)(val & 0xFF); val >>= 8; result[pos + 2] = (Byte)(val & 0xFF); val >>= 8; result[pos + 1] = (Byte)(val & 0xFF); val >>= 8; result[pos] = (Byte)(val & 0xFF); } return numBytes; } void BigInteger::SetBit(Uint bitNum) { Uint bytePos = bitNum >> 5; // divide by 32 char bitPos = (char)(bitNum & 0x1F); // get the lowest 5 bits Uint mask = (Uint)1 << bitPos; this->data[bytePos] |= mask; if (bytePos >= (Uint)this->dataLength) { this->dataLength = (int)bytePos + 1; } } void BigInteger::UnsetBit(Uint bitNum) { Uint bytePos = bitNum >> 5; if (bytePos < (Uint)this->dataLength) { char bitPos = (char)(bitNum & 0x1F); Uint mask = ( Uint)1 << bitPos; Uint mask2 = 0xFFFFFFFF ^ mask; this->data[bytePos] &= mask2; if (this->dataLength > 1 && this->data[this->dataLength - 1] == 0) this->dataLength--; } } BigInteger BigInteger::Sqrt() { Uint numBits = (Uint)BitCount(); if ((numBits & 0x1) != 0) // odd number of bits numBits = (numBits >> 1) + 1; else numBits = (numBits >> 1); Uint bytePos = numBits >> 5; char bitPos = (char)(numBits & 0x1F); Uint mask; BigInteger result; if (bitPos == 0) mask = 0x80000000; else { mask = (Uint)1 << bitPos; bytePos++; } result.dataLength = (int)bytePos; for (int i = (int)bytePos - 1; i >= 0; i--) { while (mask != 0) { // guess result.data[i] ^= mask; // undo the guess if its square is larger than this if ((result * result) > *this) result.data[i] ^= mask; mask >>= 1; } mask = 0x80000000; } return result; } __int64 BigInteger::Abs(__int64 value) { if(value<0) { return -value; }else { return value; } }