• 算法-----python实现


    斐波那契数列

    def f(n):
        if n == 1:
            return 1
        elif n == 2:
            return 1
        else:
            return f(n-1)+f(n-2)
    
    print(f(8))

    用普通函数实现斐波那契数列:

    def f(n):
        li = [0,1,1]
        if n <=2:
            return li[n]
        for i in range(3,n+1):
            li.append(li[-1]+li[-2])
        return li[n]
    
    print(f(8))

    常见的时间复杂度(按照效率排序)

    O(1)<O(logn)<O(n)<O(nlogn)<O(n2)<O(n2logn)<O(n3)

    递归实例:汉诺塔问题

    def hanoi(n,A,B,C):
        if n > 0:
            hanoi(n-1,A,C,B)
            print("%s->%s"%(A,C))
            hanoi(n-1,B,A,C)
    
    hanoi(4,"A","B","C")

    二分查找

    def binary_search(li, val):
        low = 0
        high = len(li) - 1
        while low <= high:
            mid = (low + high) // 2
            if li[mid] < val:
                low = mid + 1
            elif li[mid] > val:
                high = mid -1
            else:
                return mid
        return None

    冒泡排序

    import random
    
    
    def bubble_sort(li):
        for i in range(len(li)-1):  # i表示第i趟,共n-1趟
            # 第i趟 无序区范围 0~n-i-1
            for j in range(len(li)-i-1):
                if li[j] > li[j+1]:
                    li[j],li[j+1] = li[j+1],li[j]
            print(li)
    
    
    li = [8,5,7,9,4,2,6,1,3]
    bubble_sort(li)

    冒泡排序------优化

    @cal_time
    def bubble_sort_2(li):
        for i in range(len(li)-1):
            exchange = False
            for j in range(len(li)-1):
                if li[j] > li[j+1]:
                    li[j],li[j+1] = li[j+1],li[j]
                    exchange = True
            if not exchange:
                return
    
    li=list(range(10000))
    random.shuffle(li)
    bubble_sort_2(li)
    冒泡排序最好时间复杂度是O(n),最坏时间复杂度是O(n2)

    选择排序:

    import random
    from cal_time import *
    
    
    # 找到最小数的位置
    def find_min_pos(li):
        min_pos = 0
        for i in range(1,len(li)):
            if li[i] < li[min_pos]:
                min_pos = i
        return min_pos
    
    
    @cal_time
    def select_sort(li):
        for i in range(len(li)-1):
            min_pos = i
            for j in range(i+1,len(li)):
                if li[j] < li[min_pos]:
                    min_pos = j
            li[i],li[min_pos] = li[min_pos],li[i]
    
    
    li = list(range(10000))
    select_sort(li)
    选择排序没有最好排序,最坏时间复杂度是O(n2)

    插入排序:

    import random
    from cal_time import *
    @cal_time
    def insert_sort(li):
        for i in range(1,len(li)):
            # i 表示趟数 还表示摸到牌的位置
            j = i-1
            tmp = li[i]
            while j>=0  and li[j] > tmp:
                # 两个终止条件: 1. j==-1 2. j位置的值小于等于tmp
                li[j+1] = li[j]
                j -=1
            li[j+1] = tmp
    
    
    li = list(range(10000))
    random.shuffle(li)
    insert_sort(li)
    插入排序的最好情况也是O(n),最坏时间复杂度是O(n2)

    冒泡排序,选择排序,插入排序的空间复杂度是O(1)

    快速排序:

  • 相关阅读:
    SpringMVC---RequestMapping注解类的使用方法
    SpringMVC---简单登录例子
    SpringMVC---简介
    MyBatis---动态SQL
    Hive基本操作
    hive初识
    scala编码规范
    Spark2.x 与 Spark1.x 关系
    spark idea项目打jar包的两种方式
    SparkStreaming 对Window的reduce的方法解析(转载)
  • 原文地址:https://www.cnblogs.com/hnlmy/p/9845965.html
Copyright © 2020-2023  润新知