• 狄利克雷函数


    1.基本概念

    约翰·彼得·古斯塔夫·勒热纳·狄利克雷(1805-1859),德国数学家,创立了现代函数的正式定义。

    狄利克雷提出了一个非常古怪的函数,叫做狄利克雷函数,专门有个符号D(X)来表示:

     

     特点:

    狄利克雷函数,因为无理数、有理数的混杂,所以函数值也是1,0互相参杂,可以直观的想象,该函数:

    • 画不出图像
    • 处处没有极限
    • 处处不连续
    • 这是一个有界函数

    其实也可以勉强画出它的图像,在宏观角度下看

     但实际上它的图像不是正真连续的直线,在微观上看,这两条直线应该充满了许多的小洞,因为实数是由有理数,无理数才可以铺满它。

    所以狄利克雷函数并不是连续函数。(连续函数的定义需满足:1.在此处有定义;2.在此区间内有极限)因为它虽然在实数范围内有定义,但是函数图像来回波动,没有一个确切的极限。

     用严谨的数学表达式可以写成如下格式:

    大白话解释:

    (1)首先第一个明白什么是有理数,无理数,小学我们就学过,无理数是无限不循环小数,有理数是有限小数或无限循环小数,任何一个有理数后可以化为分数的形式,而无理数则不能。

    注意:(3.000也是有限小数,也就是说整数可以化成小数形式,即所有整数都是有理数)

    (2)然后你要知道有理数是2个整数相除的形式,而无理数不能写成2个整数相除。k!是k的阶乘,就是1×2×...×k。如果k趋于无穷那么k!就是所有整数的成乘积。所以x如果是有理数那么xk!就是整数(有理数放大无穷大倍数,就变成整数)。cos pi  k!x的值只能是±1,外面再乘一个2次方变1。然后就一直是1了。反之x是无理数,xk!一定不是整数,cos pik!x就不能等于+-1,根据余弦函数的值域,cospik!x就只能取绝对值小于1的数了,那么在外面在来个2j次方,j趋于无穷,最后一定是0啊。



    (2)狄利克雷函数可以构造单点连续函数

    虽然说狄利克雷函数不是一个连续函数,但是却可以利用它构造连续函数,确切来说可以利用它来构造在某个区间或者某个点连续的函数。

    首先你已经知道了狄利克雷函数虽然不是连续函数,但是它是一个有界函数【0,1】,我们必须了解有界与连续有什么关系。

    有界与连续:如果一个函数有界,并且这个函数单调(单调递增,递减,不变都可以),那么这个函数有极限。

    通过上述分析,我相信你一定明白了,对于狄利克雷函数函数在构造连续函数方面的优点在哪里了,就是它是一个一个有界函数,那么在给它加上个单调的装备,它就可以变身连续函数了。

    首先你要明白,数学中的“连续”是定义在点上的概念,而非某一线段。

    所以自然而然存在单点连续函数,请注意,这个单点连续函数只在这个点上连续。

    下面是狄利克雷函数构造的单点连续函数。

     

    并且根据狄利克雷函数的性质,f(x)仅在x=0点连续,这是一个单点连续的函数。

     

    上面稀里哗啦一大堆,大白话就是说函数:在x=0处有定义,且在x->0时函数极限存在,所以这个函数在x=0处连续。

     

    自然,狄利克雷函数可以构造单点连续函数,自然多点连续函数也是小菜一碟。如下:

    构造出仅在x=1,2,3点连续的函数

     

    好了,狄利克雷函数就到这里了。

  • 相关阅读:
    MyBatis学习之输入输出类型
    MyBatis学习之多表查询
    javascript学习之this
    Elasticsearch学习之Java操作1
    CSS学习之定位
    CSS学习之浮动
    CSS学习之盒子模型
    java学习之导出Excel
    转载:手把手教你做iOS推送
    拳头公司聊天服务架构:服务器篇
  • 原文地址:https://www.cnblogs.com/hmy-666/p/12750588.html
Copyright © 2020-2023  润新知