• 算法学习二叉查找树


         创建二叉查找树、查找二叉树中的某个节点、删除某个节点、

         新增节点、查找某个节点的父节点、查找最小节点

         对二叉树进行前序遍历、中序遍历、后序遍历

         前序遍历,也叫先根遍历,遍历的顺序是,根,左子树,右子树  
         中序遍历,也叫中根遍历,顺序是 左子树,根,右子树

        后序遍历,也叫后根遍历,遍历顺序,左子树,右子树,根

    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;

    namespace SuanFa
    {
    public class Order
    {
    //创建二分查找树
    public Tree CreateBinaryTree(int[] A)
    {
    if (A == null || A.Length == 0)
    {
    return null;
    }

    Tree root
    = new Tree(A[0]); //根节点 相当于表头指针
    Tree treeNode,temp;//要添加的节点和中间节点

    for (int i = 1; i < A.Length; i++)
    {
    temp
    = root;
    treeNode
    = new Tree(A[i]);
    AddTreeNode(temp, treeNode);
    }

    return root;
    }

    //添加树节点
    private void AddTreeNode(Tree tree, Tree node)
    {
    if (node.Text < tree.Text)//添加左子节点
    {
    if (tree.LeftTree.Count == 0)
    {
    tree.LeftTree.Add(node);
    }
    else {
    AddTreeNode(tree.LeftTree[
    0], node);
    }
    }
    else if (node.Text > tree.Text)//添加右子节点
    {
    if (tree.RightTree.Count == 0)
    {
    tree.RightTree.Add(node);
    }
    else
    {
    AddTreeNode(tree.RightTree[
    0], node);
    }
    }
    }

    //查找某个节点
    public Tree Find(Tree root,int text) {
    if (root == null)//如果当前节点为null 返回null
    {
    return null;
    }

    if (root.Text == text)//如果等于当前节点就返回当前节点
    {
    return root;
    }

    if (root.LeftTree.Count > 0)//递归左子树
    {
    if (root.Text > text)
    {
    return Find(root.LeftTree[0],text);
    }
    }

    if (root.RightTree.Count > 0)//递归右子树
    {
    if (root.Text<text)
    {
    return Find(root.LeftTree[0], text);
    }
    }

    return null;//没找到返回null
    }

    //查找某个节点的父节点
    public Tree FindF(Tree root, int text)
    {
    if (root == null)//如果当前节点为null 返回null
    {
    return null;
    }

    if (root.LeftTree.Count > 0)
    {
    if (root.LeftTree[0].Text == text)//如果等于当前节点的左子节点就返回当前节点
    {
    return root;
    }
    if (root.Text > text)//递归左子树
    {
    return FindF(root.LeftTree[0], text);
    }
    }

    if (root.RightTree.Count > 0)
    {
    if (root.RightTree[0].Text == text)//如果等于当前节点的右子节点就返回当前节点
    {
    return root;
    }
    if (root.Text < text)//递归右子树
    {
    return FindF(root.RightTree[0], text);
    }

    }

    return null;//没找到返回null
    }

    //前序遍历
    public int DLR(Tree tree,List<int> list)
    {
    if (tree == null || list == null)
    {
    return 0;
    }

    list.Add(tree.Text);
    //根节点

    if (tree.LeftTree.Count > 0) //先遍历左子树
    {
    DLR(tree.LeftTree[
    0],list);
    }

    if (tree.RightTree.Count > 0) //右子树
    {
    DLR(tree.RightTree[
    0], list);
    }

    if (list.Count > 0)
    return 1;
    return 0;
    }

    //后序遍历
    public int LRD(Tree tree, List<int> list)
    {
    if (tree == null || list == null)
    {
    return 0;
    }


    if (tree.LeftTree.Count > 0) //先遍历左子树
    {
    LRD(tree.LeftTree[
    0], list);
    }

    if (tree.RightTree.Count > 0) //右子树
    {
    LRD(tree.RightTree[
    0], list);
    }

    list.Add(tree.Text);
    //根节点

    if (list.Count > 0)
    return 1;
    return 0;
    }

    //中序遍历
    public int LDR(Tree tree, List<int> list)
    {
    if (tree == null || list == null)
    {
    return 0;
    }

    if (tree.LeftTree.Count > 0) //先遍历左子树
    {
    LDR(tree.LeftTree[
    0], list);
    }

    list.Add(tree.Text);
    //根节点

    if (tree.RightTree.Count > 0) //右子树
    {
    LDR(tree.RightTree[
    0], list);
    }

    if (list.Count > 0)
    return 1;
    return 0;
    }

    //删除节点
    //1:节点不存在
    //2:节点存在且没有子树
    //3:节点存在且有左子树,用以要删除节点为根节点树的最小节点代替当前节点
    //4;节点存在且只有右子树,用药删除节点的右子节点代替当前节点
    public Tree Delete(Tree tree, int text)
    {
    if (tree == null)
    {
    return null;
    }
    Tree newTree
    = tree;
    //要删除节点的父节点
    Tree delFNode = FindF(newTree, text);

    //要删除的节点
    Tree delNode;
    bool isleft = true;//标识被删节点是其所在树的左子节点还是右子节点

    if (delFNode == null)//要删除的节点父节点为空有两种情况。1不存在;2是根节点
    {
    delNode
    = Find(newTree, text);
    if (delNode == null)//不存在
    {
    return newTree;
    }
    Tree tmp;
    if (delNode.LeftTree.Count > 0)//存在左子树
    {
    tmp
    = FindMin(delNode);
    Tree tmpF
    = FindF(delNode, tmp.Text);
    tmpF.LeftTree.Remove(tmp);
    tmp.LeftTree.Add(delNode.LeftTree[
    0]);
    if (delNode.RightTree.Count > 0)
    {
    tmp.RightTree.Add(delNode.RightTree[
    0]);
    }
    newTree
    = tmp;
    }
    else if (delNode.RightTree.Count > 0)//只有右子树
    {
    newTree
    = delNode.RightTree[0];
    }

    return newTree;

    }
    //要删除的节点是左子树
    else if (delFNode.LeftTree.Count > 0 && delFNode.LeftTree[0].Text == text)
    {
    delNode
    = delFNode.LeftTree[0];
    isleft
    = true;
    }
    //要删除的节点是右子树
    else if (delFNode.RightTree.Count > 0 && delFNode.RightTree[0].Text == text)
    {
    delNode
    = delFNode.RightTree[0];
    isleft
    = false;
    }
    else//要删除的节点不存在
    {
    return newTree;
    }

    Tree temp;
    //如果存在左子树,就用左子树的最小节点取代要删除的节点,并删除这个最小节点
    if (delNode.LeftTree.Count > 0)
    {
    temp
    = FindMin(delNode);

    Tree tempDelNode
    = delNode;
    while (tempDelNode.LeftTree.Count > 0)
    {
    tempDelNode
    = tempDelNode.LeftTree[0];
    }
    if (temp.Text != delNode.LeftTree[0].Text)
    {
    temp.LeftTree.Add(delNode.LeftTree[
    0]);
    }
    delNode.LeftTree.Remove(tempDelNode);

    //把要删除节点的右子树作为最小节点的右子树
    if (delNode.RightTree.Count > 0)
    {
    temp.RightTree.Add(delNode.RightTree[
    0]);
    }

    if (isleft)
    {
    delFNode.LeftTree.Add(temp);
    delFNode.LeftTree.Remove(delNode);
    }
    else
    {
    delFNode.RightTree.Add(temp);
    delFNode.RightTree.Remove(delNode);
    }
    }
    else if (delNode.RightTree.Count > 0)
    {
    delFNode.RightTree.Add(delNode.RightTree[
    0]);
    }

    return newTree;
    }

    //查找最小节点
    public Tree FindMin(Tree tree)
    {
    if (tree == null)
    {
    return null;
    }

    //如果当前节点没有左子树就返回他自己
    if (tree.LeftTree.Count == 0)
    {
    return tree;
    }

    //递归左子树
    return FindMin(tree.LeftTree[0]);

    }
    }
    }

    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;

    namespace SuanFa
    {
    public class Tree
    {
    //显示的值
    public int Text
    {
    set;
    get;
    }

    //构造函数
    public Tree(int text) {
    this.Text = text;
    if (LeftTree == null)
    {
    LeftTree
    = new List<Tree>();
    }
    if (RightTree == null)
    {
    RightTree
    = new List<Tree>();
    }
    }

    //左子树
    public List<Tree> LeftTree
    {
    set;
    get;
    }

    //右子树
    public List<Tree> RightTree
    {
    set;
    get;
    }
    }
    }

    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;

    namespace SuanFa
    {
    class Program
    {
    static void Main(string[] args)
    {
    int[] B = new int[] { 50,25,75,15,35,65,85,10,20,30,40,60,70,80,90 };
    Order order
    = new Order();
    Tree tree
    = order.CreateBinaryTree(B);

    Console.Write(
    "原先数组:");
    foreach (int i in B)
    {
    Console.Write(i.ToString()
    + " ");
    }
    Console.WriteLine();
    Console.Write(
    "----------------------------形成二叉查找树--------------------------");
    Console.WriteLine();
    Console.WriteLine(
    "删除前:");
    Console.WriteLine();
    Show(B, order, tree);
    Console.WriteLine();
    Console.WriteLine();
    Tree newTree
    = order.Delete(tree,50);
    Console.WriteLine(
    "删除跟节点50后:");
    Console.WriteLine();
    Show(B, order, newTree);
    Console.WriteLine();
    Console.WriteLine();
    Tree newTree1
    = order.Delete(newTree, 65);
    Console.WriteLine(
    "删除65后:");
    Console.WriteLine();
    Show(B, order, newTree1);
    Console.ReadLine();
    }

    private static void Show(int[] B, Order order, Tree tree)
    {
    List
    <int> listDlr = new List<int>();
    if (order.DLR(tree, listDlr) > 0)
    {
    Console.Write(
    "前序遍历:");
    foreach (int i in listDlr)
    {
    Console.Write(i.ToString()
    + " ");
    }
    Console.WriteLine();
    Console.WriteLine();
    }

    List
    <int> listLrd = new List<int>();
    if (order.LRD(tree, listLrd) > 0)
    {
    Console.Write(
    "后序遍历:");
    foreach (int i in listLrd)
    {
    Console.Write(i.ToString()
    + " ");
    }
    Console.WriteLine();
    Console.WriteLine();
    }

    List
    <int> listLdr = new List<int>();
    if (order.LDR(tree, listLdr) > 0)
    {
    Console.Write(
    "中序遍历:");
    foreach (int i in listLdr)
    {
    Console.Write(i.ToString()
    + " ");
    }
    }
    }
    }
    }
  • 相关阅读:
    python---函数补充(变量传递),语句执行顺序(入栈顺序)
    python---基础知识回顾(十)进程和线程(多线程)
    python---方法解析顺序MRO(Method Resolution Order)<以及解决类中super方法>
    FindMe
    Android Studio系列教程五--Gradle命令详解与导入第三方包
    Material Design
    asmack
    AlarmDemo-with-Database
    ZhuGongpu CloudX-for-Android
    SaundProgressBar
  • 原文地址:https://www.cnblogs.com/hlxs/p/2087987.html
Copyright © 2020-2023  润新知