• Codeforces 500B New Year Permutation( Floyd + 贪心 )


    B. New Year Permutation
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    User ainta has a permutation p1, p2, ..., pn. As the New Year is coming, he wants to make his permutation as pretty as possible.

    Permutation a1, a2, ..., an is prettier than permutation b1, b2, ..., bn, if and only if there exists an integer k (1 ≤ k ≤ n) where a1 = b1, a2 = b2, ..., ak - 1 = bk - 1 and ak < bk all holds.

    As known, permutation p is so sensitive that it could be only modified by swapping two distinct elements. But swapping two elements is harder than you think. Given an n × n binary matrix A, user ainta can swap the values of pi and pj (1 ≤ i, j ≤ ni ≠ j) if and only if Ai, j = 1.

    Given the permutation p and the matrix A, user ainta wants to know the prettiest permutation that he can obtain.

    Input

    The first line contains an integer n (1 ≤ n ≤ 300) — the size of the permutation p.

    The second line contains n space-separated integers p1, p2, ..., pn — the permutation p that user ainta has. Each integer between 1 and n occurs exactly once in the given permutation.

    Next n lines describe the matrix A. The i-th line contains n characters '0' or '1' and describes the i-th row of A. Thej-th character of the i-th line Ai, j is the element on the intersection of the i-th row and the j-th column of A. It is guaranteed that, for all integers i, j where 1 ≤ i < j ≤ nAi, j = Aj, i holds. Also, for all integers i where 1 ≤ i ≤ nAi, i = 0 holds.

    Output

    In the first and only line, print n space-separated integers, describing the prettiest permutation that can be obtained.

    Sample test(s)
    input
    7
    5 2 4 3 6 7 1
    0001001
    0000000
    0000010
    1000001
    0000000
    0010000
    1001000
    output
    1 2 4 3 6 7 5
    input
    5
    4 2 1 5 3
    00100
    00011
    10010
    01101
    01010
    output
    1 2 3 4 5
    Note

    In the first sample, the swap needed to obtain the prettiest permutation is: (p1, p7).

    In the second sample, the swaps needed to obtain the prettiest permutation is (p1, p3), (p4, p5), (p3, p4).

                                               

    permutation p is a sequence of integers p1, p2, ..., pn, consisting of n distinct positive integers, each of them doesn't exceed n. The i-th element of the permutation p is denoted as pi. The size of the permutation p is denoted as n.

    题意:序列 a1, a2, ..., an , b1, b2, ..., bn, 如果存在整数 k (1 ≤ k ≤ n) 符合 a1 = b1, a2 = b2, ..., ak - 1 = bk - 1 并且 ak < bk .

    则称 a 序列比 b序列好。

    题目给出一个序列 p ,再给出一个n*n的矩阵A , A[i][j] = 1 ,表示p中第i个元素能跟第j个元素交换 。

    问p经过交换后,最好的序列是什么。

    做法是用Floyd先处理任意pi , pj 能否交换 O(n^3)

    然后再将序列从前到后贪心交换一次。

    #include <bits/stdc++.h>
    using namespace std;
    const int N = 1010;
    int n , a[N] , A[N][N];
    string s ;
    int main()
    {
        cin >> n;
        for( int i = 1 ; i <= n ; ++i ) cin >> a[i];
        for( int i = 1 ; i <= n ; ++i ) {
            cin >> s ;
            for( int j = 0 ; j < n ; ++j ){
                if( s[j] == '1' ) A[i][j+1] = 1 ;
                else A[i][j+1] = 0 ;
            }
        }
        for( int i = 1 ; i <= n ; ++i ){
            for( int j = 1 ; j <= n ; ++j ){
                if( A[j][i] == 0 ) continue ;
                for( int k = 1 ; k <= n ; ++k ){
                    if( A[i][k] ) A[j][k] = 1 ;
                }
            }
        }
    
        for( int i = 1 ; i <= n ; ++i ){
            for( int j = i + 1 ; j <= n ; ++j ){
                if( A[i][j] && a[i] > a[j] ) swap( a[i] , a[j] );
            }
        }
        for( int i = 1 ; i <= n ; ++i ) cout << a[i] << ' ';
    }
    View Code
    only strive for your goal , can you make your dream come true ?
  • 相关阅读:
    qt 问题及处理
    windows 依赖查看
    java基础知识
    Linux 相关
    OutLook中添加Exchange失败问题
    开源协议简介
    grail开发环境的搭建
    node+mongodb+WP构建的移动社交应用源码 分享
    INotifyPropertyChanged接口的详细说明
    WP8.1开发:后台任务详解(求推荐)
  • 原文地址:https://www.cnblogs.com/hlmark/p/4194928.html
Copyright © 2020-2023  润新知