• hdu 4939 Stupid Tower Defense


    Stupid Tower Defense

    Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 1589    Accepted Submission(s): 452


    Problem Description
    FSF is addicted to a stupid tower defense game. The goal of tower defense games is to try to stop enemies from crossing a map by building traps to slow them down and towers which shoot at them as they pass.

    The map is a line, which has n unit length. We can build only one tower on each unit length. The enemy takes t seconds on each unit length. And there are 3 kinds of tower in this game: The red tower, the green tower and the blue tower. 

    The red tower damage on the enemy x points per second when he passes through the tower.

    The green tower damage on the enemy y points per second after he passes through the tower.

    The blue tower let the enemy go slower than before (that is, the enemy takes more z second to pass an unit length, also, after he passes through the tower.)

    Of course, if you are already pass through m green towers, you should have got m*y damage per second. The same, if you are already pass through k blue towers, the enemy should have took t + k*z seconds every unit length.

    FSF now wants to know the maximum damage the enemy can get.
     
    Input
    There are multiply test cases.

    The first line contains an integer T (T<=100), indicates the number of cases. 

    Each test only contain 5 integers n, x, y, z, t (2<=n<=1500,0<=x, y, z<=60000,1<=t<=3)
     
    Output
    For each case, you should output "Case #C: " first, where C indicates the case number and counts from 1. Then output the answer. For each test only one line which have one integer, the answer to this question.
     
    Sample Input
    1
    2 4 3 2 1
     
    Sample Output
    Case #1: 12
     
     
    Hint
    For the first sample, the first tower is blue tower, and the second is red tower.
    So, the total damage is 4*(1+2)=12 damage points.
     
     

    题目给出一条长度为n的直线 , 你可以在长度为1的单元上面建造塔。

    有三种类型的塔 

    颜色                  效果

    red               经过这个塔的时候,收到 x  (d / s) 的伤害

    green           经过这个塔之后 , 受到 y (d / s) 的持续伤害 

    bule             经过这个塔之后 , 经过1个塔的时间增加 z 秒

    题目要求 , 求出在直线上放置n个塔 , 使得经过直线后受到的伤害最大。 

    然后可想而知, 红色无论放多少个。 最后放肯定是没错的 , 因为能够得到蓝色的叠加时间 , 伤害效果尽量大。

    剩下就是蓝色跟绿色 , 应该怎么放。

    这时候就要用到DP了 。

    dp[i][j] 。。。表示前  i + j  (<=n ) 个长度   i 个放green , j 个放blue 所得到的最大伤害 。  

    转移就是这样取就好了

    dp[i][j] = max( dp[i-1][j] + ( j * z + t ) * y * ( i - 1 ) , dp[i][j-1] + ( ( j - 1 ) * z + t ) * y * i );

    注意一下边界 。 

    然后最后要补上 red 塔的伤害就得出答案了~

    #include <cstdio>
    #include <iostream>
    #include <cstring>
    using namespace std;
    typedef long long ll;
    const int N = 1550 ;
    
    ll dp[N][N];   // i = green , j = blue ...
    
    int main()
    
    {
        ll _ , n , x , y , z , t , cas = 1;
        #ifdef LOCAL
            freopen("in","r",stdin);
        #endif
        cin >> _ ;
        while( _ -- ){
            cin >> n >> x >> y >> z >> t ;
            cout << "Case #"<< cas++ <<": ";
    
            memset(dp,0,sizeof dp);
    
            for( int i = 1 ; i <= n ; ++i ){
                for( int j = 0 ; j <= i ; ++j ){
                        int k = i - j ;
                        ll temp = 0 ;
                        if( j > 0 ) temp = max( temp , dp[j-1][k] + ( k * z  + t ) * y * ( j - 1 )  );
                        if( k > 0 ) temp = max( temp , dp[j][k-1] + ( ( k - 1 ) * z + t ) * y * j ) ;
                        dp[j][k] = temp ;
                }
            }
    
            ll ans = 0 ;
            for( int i = 0 ; i <= n ; ++i ){
                for( int j = 0 ; j + i <= n ; ++j ){
                    ans = max ( ans , dp[i][j] + ( n - i - j ) * ( x * ( t + z * j ) + i * y * ( t + z * j ) ) );
                }
            }
            cout << ans << endl ;
        }
        return 0;
    }
    only strive for your goal , can you make your dream come true ?
  • 相关阅读:
    php框架laravel:数据库建立:artisan
    SpringCloud微服务(03):Hystrix组件,实现服务熔断
    SpringCloud微服务(02):Ribbon和Feign组件,实现服务调用的负载均衡
    SpringCloud微服务(01):Eureka组件,管理服务注册与发现
    SpringBoot2基础,进阶,数据库,中间件等系列文章目录分类
    Java描述设计模式(04):抽象工厂模式
    Java描述设计模式(03):工厂方法模式
    Java描述设计模式(02):简单工厂模式
    Java描述设计模式(01):单例模式
    SpringBoot2.0 整合 SpringSecurity 框架,实现用户权限安全管理
  • 原文地址:https://www.cnblogs.com/hlmark/p/4014784.html
Copyright © 2020-2023  润新知