• 【题解】洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB


    题解(公式推导)

    [egin{aligned} sum_{i=1}^{n}sum_{j=1}^{m}operatorname{lcm}(i,j) &=sum_{i=1}^{n}sum_{j=1}^{m}frac{ij}{gcd(i,j)}\ &=sum_{i=1}^{n}sum_{j=1}^{m}sum_{g=1}^{min(i,j)}[gcd(i,j)=g]frac{ij}{g}\ &=sum_{i=1}^{n}sum_{j=1}^{m}sum_{g=1}^{min(i,j)}[gcd(i,j)=g]frac{i}{g}frac{j}{g}g\ &=sum_{g=1}^{min(n,m)}gsum_{i=1}^{n}sum_{j=1}^{m}[gcd(i,j)=g]frac{i}{g}frac{j}{g}\ &=sum_{g=1}^{min(n,m)}gsum_{i=1}^{lfloorfrac{n}{g} floor}sum_{j=1}^{lfloorfrac{m}{g} floor}[gcd(i,j)=1]ij\ &=sum_{g=1}^{min(n,m)}gsum_{i=1}^{lfloorfrac{n}{g} floor}isum_{j=1}^{lfloorfrac{m}{g} floor}j[gcd(i,j)=1]\ &=sum_{g=1}^{min(n,m)}gsum_{i=1}^{lfloorfrac{n}{g} floor}isum_{j=1}^{lfloorfrac{m}{g} floor}jsum_{g|i}sum_{g|j}mu(g)\ end{aligned} ]

    (mathbf{F}(n,m)=sumlimits_{i=1}^{n}isumlimits_{j=1}^{m}jsumlimits_{g|i}sumlimits_{g|j}mu(g)),则原式 (=sumlimits_{g=1}^{min(n,m)}gmathbf{F}(frac{n}{g},frac{m}{g}))

    考虑化简 (mathbf{F}(n,m))

    [egin{aligned} mathbf{F}(n,m) &=sum_{i=1}^{n}isum_{j=1}^{m}jsum_{g=1}^{min(n, m)}sum_{g|i}sum_{g|j}mu(g)\ &=sum_{g=1}^{min(n, m)}mu(g)sum_{i=1}^{n}isum_{j=1}^{m}j[g|i][g|j]\ &=sum_{g=1}^{min(n, m)}mu(g)sum_{i=1}^{lfloorfrac{n}{g} floor}idsum_{j=1}^{lfloorfrac{m}{g} floor}jd\ &=sum_{g=1}^{min(n, m)}mu(g)g^2sum_{i=1}^{lfloorfrac{n}{g} floor}isum_{j=1}^{lfloorfrac{m}{g} floor}j\ end{aligned} ]

    (mathbf{S}(l, r)=frac{(l+r)(r-l+1)}{2}) (等差数列求和公式)

    那么

    [egin{aligned} mathbf{F}(n,m) &=sum_{g=1}^{min(n, m)}mu(g)g^2mathbf{S}(1,lfloorfrac{n}{g} floor)mathbf{S}(1,lfloorfrac{m}{g} floor)\ end{aligned} ]

    至此,(mathbf{F}(n,m)) 已经可以用数论分块在 (Theta(sqrt{min(n, m)})) 的时间内求出。

    而对原式 (sumlimits_{g=1}^{min(n,m)}gmathbf{F}(frac{n}{g},frac{m}{g})) 也可用用一次数论分块((Theta(sqrt{min(n, m)}))

    这样的总时间复杂度是 (Theta(min(n,m))=Theta(n)) 的(认为 (n,m) 同阶)

    代码

    const int N = 1e7 + 7, P = 20101009, inv6 = 16750841;
    
    bool IsntPrime[N];
    int primes[N], pcnt;
    int mu[N];
    int64 sum[N];
    
    void init(int maxx) {
        sum[1] = mu[1] = 1;
        for (int i = 2; i <= maxx; ++i) {
            if (!IsntPrime[i]) primes[++pcnt] = i, mu[i] = -1;
            for (int p = 1; p <= pcnt && i * primes[p] <= maxx; ++p) {
                IsntPrime[i * primes[p]] = true;
                if (i % primes[p] == 0) break;
                mu[i * primes[p]] = -mu[i];
            }
            sum[i] = (sum[i - 1] + (int64)i * i * mu[i]) % P;
        }
    }
    
    inline int64 sum_i1(int64 n) { return (n * (n + 1) >> 1) % P; }
    
    #define query_sum(l, r) (sum[r] - sum[(l) - 1])
    
    inline int64 solve(int n, int m) {
        int64 ans = 0;
        for (int l = 1, r; l <= min(n, m); l = r + 1) {
            r = min(n / (n / l), m / (m / l));
            ans += query_sum(l, r) * sum_i1(n / l) % P * sum_i1(m / l) % P;
        }
        return ans % P;
    }
    
    signed main() {
        int n, m;
        read >> n >> m;
        init(min(n, m));
        int64 ans = 0;
        for (int l = 1, r; l <= min(n, m); l = r + 1) {
            r = min(n / (n / l), m / (m / l));
            ans += ((int64)(l + r) * (r - l + 1) >> 1) * solve(n / l, m / l) % P;
        }
        write << (ans % P + P) % P << '
    ';
        return 0;
    }
    
  • 相关阅读:
    for 续1
    8 解决多线程对共享数据出错
    7 多线程 全局变量
    6 线程threading
    5 多进程copy文件
    4 进程间通信Queue [kjuː]
    3 进程池
    2 进程multiprocessing [mʌltɪ'prəʊsesɪŋ] time模块
    1 多任务fork Unix/Linux/Mac
    16 pep8 编码规范
  • 原文地址:https://www.cnblogs.com/hkxadpall/p/solution-luogu-P1829.html
Copyright © 2020-2023  润新知