• [HDU2855]Fibonacci Check-up


    题目:Fibonacci Check-up

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855

    分析:

    1)二项式展开:$(x+1)^n = sum^n_{k=0}{C^k_n * x^k}$

    2)Fibonacci数列可以写为:$ left[ egin{array}{cc} 0 & 1 \ 1 & 1 end{array} ight]^n$的左下角项。

    3)构造矩阵$ T = Fib+E = left[ egin{array}{cc} 0 & 1 \ 1 & 1 end{array} ight] + left[ egin{array}{cc} 1 & 0 \ 0 & 1 end{array} ight] = left[ egin{array}{cc} 1 & 1 \ 1 & 2 end{array} ight]$。

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    using namespace std;
    typedef long long LL;
    int MOD;
    struct Matrix{
        LL a[2][2];
        void init(int f){
            memset(a,0,sizeof a);
            if(f==-1)return;
            for(int i=0;i<2;++i)a[i][i]=1;
        }
    };
    Matrix operator*(Matrix& A,Matrix& B){
        Matrix C;C.init(-1);
        for(int i=0;i<2;++i)
        for(int j=0;j<2;++j)
            for(int k=0;k<2;++k){
                C.a[i][j]+=A.a[i][k]*B.a[k][j];
                C.a[i][j]%=MOD;
            }
        return C;
    }
    Matrix operator^(Matrix A,int n){
        Matrix Rt;Rt.init(0);
        for(;n;n>>=1){
            if(n&1)Rt=Rt*A;
            A=A*A;
        }
        return Rt;
    }
    int main(){
        int n,Case;scanf("%d",&Case);
        Matrix A,T;
        T.a[0][0]=1;T.a[0][1]=1;
        T.a[1][0]=1;T.a[1][1]=2;
    
        for(;Case--;){
            scanf("%d%d",&n,&MOD);
            A=T^n;
            LL ans=A.a[1][0];
            printf("%lld
    ",ans%MOD);
        }
    
        return 0;
    }
            

    4)$sum^n_{k=0}{C^k_n * f(k)} = f(2*n) $

    5)证明:$ sum^n_{k=0}{C^k_n * f(k)} $

    = $ sum^n_{k=0}{ C^k_n * { [ { ( frac{1+sqrt{5}}{2} )}^k - { ( frac{1-sqrt{5}}{2} )}^k }] } $

    = $ sum^n_{k=0}{ C^k_n * {( frac{1+sqrt{5}}{2} )}^k } - sum^n_{k=0}{ C^k_n * { ( frac{1-sqrt{5}}{2} )}^k } $

    = $ { ( frac{1+sqrt{5}}{2} + 1 ) }^k $ - $ { ( frac{1-sqrt{5}}{2} + 1 ) }^k $

    = $ { ( frac{3+sqrt{5}}{2} ) }^k $ - $ { ( frac{3-sqrt{5}}{2} ) }^k $ 

    = $ { ( frac{6+2*sqrt{5}}{4} ) }^k $ - $ { ( frac{6-2*sqrt{5}}{4} ) }^k $

    = $ { ( frac{1+sqrt{5}}{2} ) }^{2k} $ - $ { ( frac{1-sqrt{5}}{2} ) }^{2k} $

    = $ f(2*k) $

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    using namespace std;
    typedef long long LL;
    int MOD;
    struct Matrix{
        LL a[2][2];
        void init(int f){
            memset(a,0,sizeof a);
            if(f==-1)return;
            for(int i=0;i<2;++i)a[i][i]=1;
        }
    };
    Matrix operator*(Matrix& A,Matrix& B){
        Matrix C;C.init(-1);
        for(int i=0;i<2;++i)
        for(int j=0;j<2;++j)
            for(int k=0;k<2;++k){
                C.a[i][j]+=A.a[i][k]*B.a[k][j];
                C.a[i][j]%=MOD;
            }
        return C;
    }
    Matrix operator^(Matrix A,int n){
        Matrix Rt;Rt.init(0);
        for(;n;n>>=1){
            if(n&1)Rt=Rt*A;
            A=A*A;
        }
        return Rt;
    }
    int main(){
        int n,Case;scanf("%d",&Case);
        Matrix A,T;
        T.a[0][0]=0;T.a[0][1]=1;
        T.a[1][0]=1;T.a[1][1]=1;
        for(;Case--;){
            scanf("%d%d",&n,&MOD);
            A=T^(n+n);
            LL ans=A.a[1][0];
            printf("%lld
    ",ans%MOD);
        }
    
        return 0;
    }
            
  • 相关阅读:
    sql 2008 r2
    js压缩反压缩
    .NET调用Java写的WebServices(可能会碰到的问题)
    ecshop
    Chrome插件
    Unity3d ShaderLab之WorldNormalVector
    Unity 3d中Shader是什么,可以吃吗?
    java,类的继承
    java,关于POJO,查阅资料
    java,编写一个汽车类
  • 原文地址:https://www.cnblogs.com/hjj1871984569/p/10041166.html
Copyright © 2020-2023  润新知