• 数据清洗工作日志


    2020年9月23日

    方案构思

    1,获取trace出发点和目的地
    2,获取出发点和目的点对应的经纬度坐标添加到trace中
    3,获取到对应的street_number
    4,将stree_number添加到trace的路径中
    5,筛选路径出发点和目的地相同的分类
    

    读取数据

    
    trace = []
    with open('./taxi/trace/Taxi_105','r',encoding='utf8') as fp:
        for line in fp:
            trace.append(json.loads(line))
    

    取出数据

    for i in range(len(trace)):
        print('i=',i)
        print('出发地:', trace[i]['pointList'][0])
        print('目的地:', trace[i]['pointList'][len(trace[i]['pointList'])-1])
    

    # 点坐标信息
    point = []
    with open('./taxi/point/Taxi_105','r',encoding='utf8') as fp:
        for line in fp:
            point.append(json.loads(line))
    
    
    print('-------------------------------')
     
    
    # 取出需要数据
    for i in range(len(point)):
        print('i=',i)
        print('数据 id:', point[i]['pointId'])
        print('坐标 x:', point[i]['pointX'])
        print('坐标 y:', point[i]['pointy'])
    
    
    

    2020年9月24日

    url请求变量参数

    a= 31.225696563611
    b= 121.49884033194
    r = requests.get('http://api.map.baidu.com/reverse_geocoding/v3/?ak=ggWQp8TQXm39eaDlW6OBkO3HBnvbYHUT&output=json&coordtype=wgs84ll&location={a},{b}'.format(a=a,b=b))    
    print(r.json())         
    print('street_number=',r.json()['result']['addressComponent']['street_number'])
    

    json数据的追加

    embed = {'start_street':188,'des_street':199}
    for i in embed:
        trace[0][i]=embed[i]
        
    jsObj = json.dumps(trace[0])
    
    
    print(jsObj)
    

    2020年9月25日

    出现BUG

    
    
    for j in range(len(trace)):
        print('j=',j)
        dep=trace[j]['pointList'][0]
        des=trace[j]['pointList'][len(trace[j]['pointList'])-1]   
        for i in range(len(point)):
            print('dep',type(dep))
            print('id',type(point[i]['pointId']))
            print('-----------------------------------')
            if point[i]['pointId'] == dep:
                print('666')
                x = point[i]['pointX']
                y = point[i]['pointy']
                r = requests.get('http://api.map.baidu.com/reverse_geocoding/v3/?ak=ggWQp8TQXm39eaDlW6OBkO3HBnvbYHUT&output=json&coordtype=wgs84ll&location={x},{y}'.format(x=x,y=y))     
                dep_street = r.json()['result']['addressComponent']['street_number']
                print(dep_street)
        for i in range(len(point)):
            if point[i]['pointId'] == des:
                x = point[i]['pointX']
                y = point[i]['pointy']
                r = requests.get('http://api.map.baidu.com/reverse_geocoding/v3/?ak=ggWQp8TQXm39eaDlW6OBkO3HBnvbYHUT&output=json&coordtype=wgs84ll&location={x},{y}'.format(x=x,y=y))     
                des_street = r.json()['result']['addressComponent']['street_number']
                
    
    
    
    

    找到问题

    初步调试

    
    
    import json
    
    import requests
    
    # 路线轨迹
    trace = []
    with open('./taxi/trace/Taxi_105','r',encoding='utf8') as fp1:
        for line in fp1:
            trace.append(json.loads(line))
    
    
    fp1.close
    
    
    # 点坐标信息
    point = []
    with open('./taxi/point/Taxi_105','r',encoding='utf8') as fp2:
        for line in fp2:
            point.append(json.loads(line))
    fp2.close
    
    
    
    
    
    
    
    # ----------------------------------------------------------------
    dep_street=0
    des_street=2
    
    for j in range(len(trace)):
        print('j=',j)
        dep=trace[j]['pointList'][0]
        des=trace[j]['pointList'][len(trace[j]['pointList'])-1]   
        for i in range(len(point)):
            if point[i]['pointId'] == str(dep):
                y = point[i]['pointX']
                x = point[i]['pointy']    
                r = requests.get('http://api.map.baidu.com/reverse_geocoding/v3/?ak=ggWQp8TQXm39eaDlW6OBkO3HBnvbYHUT&output=json&coordtype=wgs84ll&location={x},{y}'.format(x=x,y=y))     
                dep_street = r.json()['result']['addressComponent']['street_number']
                break
                
        for i in range(len(point)):
            if point[i]['pointId'] == des:
                y = point[i]['pointX']
                x = point[i]['pointy']
                r = requests.get('http://api.map.baidu.com/reverse_geocoding/v3/?ak=ggWQp8TQXm39eaDlW6OBkO3HBnvbYHUT&output=json&coordtype=wgs84ll&location={x},{y}'.format(x=x,y=y))     
                des_street = r.json()['result']['addressComponent']['street_number']
                break
        embed = {'dep_street':dep_street,'des_street':des_street}
        for i in embed:
            trace[j][i]=embed[i]
        
        jsObj = json.dumps(trace[j])
        print(jsObj)
                
    
    
    
    

    整理调试

    
    # -*- coding: utf-8 -*-
    """
    1,获取trace出发点和目的地
    2,获取出发点和目的点对应的经纬度坐标添加到trace中
    3,获取到对应的street_number
    4,将stree_number添加到trace的路径中
    5,筛选路径出发点和目的地相同的分类
    """
    import json
    
    import requests
    
    # 读取路线轨迹------------------------------------------------------------
    trace = []
    with open('./taxi/trace/Taxi_105','r',encoding='utf8') as fp1:
        for line in fp1:
            trace.append(json.loads(line))
    
    
    fp1.close
    
    
    # 读取点坐标信息---------------------------------------------------------
    point = []
    with open('./taxi/point/Taxi_105','r',encoding='utf8') as fp2:
        for line in fp2:
            point.append(json.loads(line))
    fp2.close
    
    
    # 处理数据----------------------------------------------------------------
    dep_street = -1
    des_street = -1
    carId = -1
    
    for j in range(len(trace)):
        print('j=',j)
        dep=trace[j]['pointList'][0]
        des=trace[j]['pointList'][len(trace[j]['pointList'])-1]   
        for i in range(len(point)):
            if point[i]['pointId'] == str(dep):
                y = point[i]['pointX']
                x = point[i]['pointy']    
                r = requests.get('http://api.map.baidu.com/reverse_geocoding/v3/?ak=ggWQp8TQXm39eaDlW6OBkO3HBnvbYHUT&output=json&coordtype=wgs84ll&location={x},{y}'.format(x=x,y=y))     
                dep_street = r.json()['result']['addressComponent']['street_number']
                break
                
        for i in range(len(point)):
            if point[i]['pointId'] == str(des):
                y = point[i]['pointX']
                x = point[i]['pointy']
                r = requests.get('http://api.map.baidu.com/reverse_geocoding/v3/?ak=ggWQp8TQXm39eaDlW6OBkO3HBnvbYHUT&output=json&coordtype=wgs84ll&location={x},{y}'.format(x=x,y=y))     
                des_street = r.json()['result']['addressComponent']['street_number']
                break
    
        embed = {'dep_street':dep_street,'des_street':des_street}
        for i in embed:
            trace[j][i]=embed[i]  
        jsObj = json.dumps(trace[j])
        print(jsObj)
                
    
    # 写入数据--------------------------------------------------------------------
    
    
    with open("./test.txt",'wt') as fp3:
        for i in trace:
            print(i,file=fp3)
    
    fp3.close
    
    
    
    
    
    
    
    
    {'pointList': [10500001, 10500002, 10500003, 10500004, 10500005, 10500006, 10500007, 10500008], 'dep_street': '168号6楼', 'des_street': '6号楼103室'}
    {'pointList': [10500009, 105000010, 105000011, 105000012, 105000013, 105000014, 105000015, 105000016, 105000017, 105000018, 105000019, 105000020, 105000021, 105000022], 'dep_street': '226号', 'des_street': '90-2'}
    {'pointList': [105000027, 105000028, 105000029, 105000030, 105000031, 105000032, 105000033, 105000034, 105000035, 105000036], 'dep_street': '165号', 'des_street': '420号'}
    {'pointList': [105000037, 105000038, 105000039, 105000040, 105000041, 105000042, 105000043, 105000044, 105000045, 105000046, 105000047, 105000048, 105000049, 105000050, 105000051], 'dep_street': '226', 'des_street': '1129弄98'}
    {'pointList': [105000053, 105000054, 105000055, 105000056, 105000057, 105000058, 105000059, 105000060], 'dep_street': '20号', 'des_street': '44号'}
    {'pointList': [105000065, 105000066, 105000067, 105000068, 105000069, 105000070, 105000071, 105000072, 105000073, 105000074, 105000075, 105000076, 105000077, 105000078, 105000079, 105000080], 'dep_street': '8号', 'des_street': '177号'}
    .............
    
    

    单文件处理完毕

    import json
    
    import requests
    
    # 读取路线轨迹------------------------------------------------------------
    trace = []
    with open('./taxi/taxi/trace/Taxi_105','r',encoding='utf8') as fp1:
        for line in fp1:
            trace.append(json.loads(line))
    
    
    fp1.close
    
    
    # 读取点坐标信息---------------------------------------------------------
    point = []
    with open('./taxi/taxi/point/Taxi_105','r',encoding='utf8') as fp2:
        for line in fp2:
            point.append(json.loads(line))
    fp2.close
    
    
    # 处理数据----------------------------------------------------------------
    dep_street = -1
    des_street = -1
    carId = -1
    
    for j in range(len(trace)):
        print('j=',j)
        dep=trace[j]['pointList'][0]
        des=trace[j]['pointList'][len(trace[j]['pointList'])-1]   
        for i in range(len(point)):
            if point[i]['pointId'] == str(dep):
                y = point[i]['pointX']
                x = point[i]['pointy']    
                r = requests.get('http://api.map.baidu.com/reverse_geocoding/v3/?ak=ggWQp8TQXm39eaDlW6OBkO3HBnvbYHUT&output=json&coordtype=wgs84ll&location={x},{y}'.format(x=x,y=y))     
                dep_street = r.json()['result']['addressComponent']['street_number']
                break
                
        for i in range(len(point)):
            if point[i]['pointId'] == str(des):
                y = point[i]['pointX']
                x = point[i]['pointy']
                r = requests.get('http://api.map.baidu.com/reverse_geocoding/v3/?ak=ggWQp8TQXm39eaDlW6OBkO3HBnvbYHUT&output=json&coordtype=wgs84ll&location={x},{y}'.format(x=x,y=y))     
                des_street = r.json()['result']['addressComponent']['street_number']
                carId = point[i]['carId']
                break
    
        embed = {'dep_street':dep_street,'des_street':des_street,'carId':carId}
        for i in embed:
            trace[j][i]=embed[i]  
        jsObj = json.dumps(trace[j])
        print(jsObj)
                
    
    # 写入数据--------------------------------------------------------------------
    
    
    with open("./test.txt",'wt') as fp3:
        for i in trace:
            print(i,file=fp3)
    
    fp3.close
    
    
    

    2020年9月26日

    读取目录下的所有文件

    
    # -*- coding: utf-8 -*-
    """
    Created on Fri Sep 25 20:06:24 2020
    
    @author: jacksun
    """
    
    import os
    
    import json
    
    path = "C:/Data/taxi/point" #文件夹目录
    files= os.listdir(path) #得到文件夹下的所有文件名称
    s = []
    for file in files: #遍历文件夹
         if not os.path.isdir(file): #判断是否是文件夹,不是文件夹才打开
              f = open(path+"/"+file); #打开文件
    
              iter_f = iter(f); #创建迭代器
              str = ""
              for line in iter_f: #遍历文件,一行行遍历,读取文本
                  line=line.rstrip("
    ")
                  str = str + line
              s.append(str) #每个文件的文本存到list中
              
    print(s) #打印结果
    

    合并写入新文件

    print('-------------------------------')
    # 写入文件
    with open("./point.txt",'wt') as fp3:
        for i in s:
            print(i,file=fp3)
    
    fp3.close
    
    

    遇到BUG

    • 目前出现了一个BUG: ① 合并文件导致数据格式并不是很整齐

    • 而且 ② 读取单个文件时,并没有按照json格式一个一个读取 , 反而自己合并数据

    • 但是对于少量的(两个)文件合并的时候是正常的 , 可能是文件太多(四千个文件)导致的

    解决BUG

    • 每次遍历一行就输入当文件 并且换行
    
    # -*- coding: utf-8 -*-
    """
    Created on Fri Sep 25 20:06:24 2020
    
    @author: jacksun
    """
    
    import os
    
    import json
    
    import requests
    
    path = "C:/Data/taxi/trace"  # 文件夹目录
    files = os.listdir(path)  # 得到文件夹下的所有文件名称
    s = []
    for file in files:  # 遍历文件夹
        if not os.path.isdir(file):  # 判断是否是文件夹,不是文件夹才打开
            f = open(path + "/" + file);  # 打开文件
    
            iter_f = iter(f);  # 创建迭代器
            str = ""
            i=0
            for line in iter_f:  # 遍历文件,一行行遍历,读取文本
                line = line.rstrip("
    ")
                with open("./trace_full.txt", 'a') as fp3:
    
                        fp3.write(line+"
    ")
                fp3.close
    
    
    
    print('-------------------------------ok')
    
    
    
    

    2020年9月27日

    对相同首尾的分类(单文件)

    
    # -*- coding: utf-8 -*-
    
    # 分类数据
    import json
    import pandas as pd
    import requests
    
    # 读取路线轨迹------------------------------------------------------------
    trace = []
    with open('./test.txt','r',encoding='utf8') as fp1:
        for line in fp1:
            trace.append(json.loads(line))
    
    
    fp1.close
    
    
    df=pd.DataFrame(trace)
    
    print("------数据分组统计个数-----")
    
    groupnum = df.groupby(['dep_street']).size()
    
    print(groupnum)
    
    #打印每组数据 这个很有用
    
    print("------数据分组-----")
    
    for groupname,grouplist in df.groupby('dep_street'):
    
        print(groupname)
    
        print(grouplist)
    
    
    # print(df.set_index(['dep_street','traceId']))
    
    
    
    
    
    

    总结

    目前数据清洗进入了尾声,现在让我们进行复盘

    1. 获取trace出发点和目的地

    2. 获取出发点和目的点对应的经纬度坐标添加到trace中,再根据经纬度通过百度api获得街道

    3. 然后在加入一个字段traceId 用于分类的时候用字典或者hashmap储存路径 ,将stree_number添加到trace的路径中

    4. 再将处理的文件保存下来,用于后面的分类

    # -*- coding: utf-8 -*-
    
    import json
    import pandas
    import requests
    
    # 路线轨迹
    trace = []
    with open('./taxi/taxi/trace/Taxi_105','r',encoding='utf8') as fp1:
        for line in fp1:
            trace.append(json.loads(line))
    fp1.close
    
    # 点坐标信息
    point = []
    with open('./taxi/taxi/point/Taxi_105','r',encoding='utf8') as fp2:
        for line in fp2:
            point.append(json.loads(line))
    fp2.close
    
    # 单个文件处理
    
    # 处理数据----------------------------------------------------------------
    dep_street = -1
    des_street = -1
    traceId = -1
    carId = -1
    
    for j in range(len(trace)):
        print('j=',j)
        dep=trace[j]["pointList"][0]
        des=trace[j]["pointList"][len(trace[j]["pointList"])-1]   
    
      
        for i in range(len(point)):
            if point[i]["pointId"] == str(dep):
                y = point[i]["pointX"]
                x = point[i]["pointy"]    
                r = requests.get('http://api.map.baidu.com/reverse_geocoding/v3/?ak=ggWQp8TQXm39eaDlW6OBkO3HBnvbYHUT&output=json&coordtype=wgs84ll&location={x},{y}'.format(x=x,y=y))     
                dep_street = r.json()['result']['addressComponent']['street_number']
                break
                
        for i in range(len(point)):
            if point[i]["pointId"] == str(des):
                y = point[i]["pointX"]
                x = point[i]["pointy"]
                r = requests.get('http://api.map.baidu.com/reverse_geocoding/v3/?ak=ggWQp8TQXm39eaDlW6OBkO3HBnvbYHUT&output=json&coordtype=wgs84ll&location={x},{y}'.format(x=x,y=y))     
                des_street = r.json()['result']['addressComponent']['street_number']
                carId = point[i]["carId"]
                traceId+=1
                break
        embed = {"dep_street":dep_street,"des_street":des_street,"carId":carId,"traceId":traceId}
        for i in embed:
            trace[j][i]=embed[i]  
        jsObj = json.dumps(trace[j])
        with open("./test.txt",'a',encoding='utf-8') as fp3:
            fp3.write(jsObj+'
    ')
    
        fp3.close
        print(jsObj)
                
    
    1. 当然上面的只是单个文件,在处理文件之前,我们需要将两个文件tracepoint文件夹的所有文件分别合并成
    # -*- coding: utf-8 -*-
    """
    Created on Fri Sep 25 20:06:24 2020
    
    @author: jacksun
    """
    
    import os
    
    import json
    
    import requests
    
    path = "C:/Data/taxi/trace"  # 文件夹目录
    files = os.listdir(path)  # 得到文件夹下的所有文件名称
    s = []
    for file in files:  # 遍历文件夹
        if not os.path.isdir(file):  # 判断是否是文件夹,不是文件夹才打开
            f = open(path + "/" + file);  # 打开文件
    
            iter_f = iter(f);  # 创建迭代器
            str = ""
            i=0
            for line in iter_f:  # 遍历文件,一行行遍历,读取文本
                line = line.rstrip("
    ")
                with open("./trace_full.txt", 'a') as fp3:
    
                        fp3.write(line+"
    ")
                fp3.close
    
    
    
    print('-------------------------------ok')
    
    
    
    1. 筛选路径出发点和目的地相同的分类
    # -*- coding: utf-8 -*-
    
    # 分类数据
    import json
    import pandas as pd
    import requests
    
    # 读取路线轨迹------------------------------------------------------------
    trace = []
    with open('./test.txt','r',encoding='utf8') as fp1:
        for line in fp1:
            trace.append(json.loads(line))
    
    
    fp1.close
    
    
    df=pd.DataFrame(trace)
    
    print("------数据分组统计个数-----")
    
    groupnum = df.groupby(['dep_street']).size()
    
    print(groupnum)
    
    #打印每组数据 这个很有用
    
    print("------数据分组-----")
    
    for groupname,grouplist in df.groupby('dep_street'):
    
        print(groupname)
    
        print(grouplist)
    
    
    
    
    1. 最后就是将数据整理保存下来
    
    
    # -*- coding: utf-8 -*-
    
    # 分类数据
    import json
    import pandas as pd
    import requests
    
    # 读取路线轨迹------------------------------------------------------------
    trace = []
    with open('./test.txt','r',encoding='utf8') as fp1:
        for line in fp1:
            trace.append(json.loads(line))
    
    
    fp1.close
    
    
    df=pd.DataFrame(trace)
    
    print("------数据分组统计个数-----")
    
    groupnum = df.groupby(['dep_street','des_street']).size()
    
    print(groupnum)
    
    #打印每组数据 这个很有用
    
    print("------数据分组-----")
    
    for groupname,grouplist in df.groupby(['dep_street','des_street']):
        print(grouplist.to_json(force_ascii=False))
    
    
    
    
    

  • 相关阅读:
    线段树专辑——hdu 1698 Just a Hook
    bool树的计算
    线段树专辑—— hdu 2795 Billboard
    数据库索引技术聚集索引和非聚集索引介绍(二)
    数据库索引技术—索引介绍 (一)
    AJAX核心对象 XMLHttpRequest 对象使用详解 (二)
    AJAX核心对象 XMLHttpRequest 对象使用详解 (一)
    输入框的提示信息(获得焦点和失去焦点时显示提示信息)
    不管你今天做了多少,加一点亮点总结今天的得分就是1.01。
    新情况——需要按照这个规定堆
  • 原文地址:https://www.cnblogs.com/hiszm/p/13726533.html
Copyright © 2020-2023  润新知