最近开始接触Scrapy这个开源的爬虫,看了一些文档和人家的技术博客,模仿一下,来爬取自己博客。
首先创建项目:
scrapy startproject myblog
items.py的编写:
我准备爬取博客文章标题,文章链接及文章被阅读的次数
# -*- coding: utf-8 -*-# Define here the models for your scraped items## See documentation in:# http://doc.scrapy.org/en/latest/topics/items.html
import scrapy
class MyBlogItem(scrapy.Item):
article_name = scrapy.Field()article_url = scrapy.Field()article_readcount = scrapy.Field()
pipelines.py的编写:
# -*- coding: utf-8 -*-# Define your item pipelines here## Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
import json
import codecs
class MyBlogPipeline(object):
def __init__(self):
self.file = codecs.open('myblog_data.json',mode='wb',encoding='utf-8')
def process_item(self, item, spider):
line = json.dumps(dict(item))+' '
self.file.write(line.decode('unicode_escape'))return item
Scrapy爬虫框架抓取的中文结果为Unicode编码,对于如何转换为UTF-8编码。下面部分的代码算是比较好的解决了这个问题。
settings.py的编写:
# -*- coding: utf-8 -*-# Scrapy settings for myblog project## For simplicity, this file contains only the most important settings by
# default. All the other settings are documented here:## http://doc.scrapy.org/en/latest/topics/settings.html
#BOT_NAME = 'myblog'SPIDER_MODULES = ['myblog.spiders']NEWSPIDER_MODULE = 'myblog.spiders'COOKIES_ENABLED = FalseITEM_PIPELINES = {'myblog.pipelines.MyBlogPipeline':300}# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'myblog (+http://www.yourdomain.com)'
这里将COOKIES_ENABLED参数置为True,使根据cookies判断访问的站点不能发现爬虫轨迹,防止被ban。
ITEM_PIPELINES类型为字典,用于设置启动的pipeline,其中key为定义的pipeline类,value为启动顺序,默认0-1000。
爬虫的编写:
#!/usr/bin/env python# __author__ = 'root'from scrapy.spider import Spider
from scrapy.selector import Selector
from scrapy.http import Request
from myblog.items import MyBlogItem
import reclass MyBlogSpider(Spider):
name = "myblog"download_delay = 1allowed_domains=["blog.csdn.net"]
start_urls=["http://blog.csdn.net/bnxf00000/article/details/2785136"
]def parse(self, response):
sel = Selector(response)item = MyBlogItem()templist=[]article_url = str(response.url)article_name = sel.xpath('//div[@id="article_details"]/div/h1/span/a/text()').extract()
article_readcount = sel.xpath('//div[@id="article_details"]/div[2]/span[@class="link_view"]/text()').extract()
for temp in article_readcount:result = re.match('(d+)',temp)if result:
templist.append(result.group(0))
#article_readcount = re.match('d+',article_readcount)item['article_name'] = [n.encode('utf-8') for n in article_name]
item['article_url'] = article_url.encode('utf-8')
item['article_readcount']=[n.encode('utf-8') for n in templist]
yield itemurls = sel.xpath('//li[@class="next_article"]/a/@href').extract()
for url in urls:#print url
url = "http://blog.csdn.net" + url
#print url
yield Request(url, callback=self.parse)
原理是分析网页得到“下一篇”的链接,并返回Request对象。进而继续爬取下一篇文章,直至没有。
执行:
scrapy crawl myblog
部分结果图示:
第一个爬虫程序,参照别人的代码和讲解依葫芦画瓢,自己添加了对阅读次数的处理,后续准备对Scrapy爬虫源码进行阅读学习。
参考链接:http://blog.csdn.net/u012150179/article/details/34486677