题面
Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., aj is equal to k.
Input
The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob's favorite number respectively.
The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob's array.
Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.
Output
Print m lines, answer the queries in the order they appear in the input.
Examples
inputCopy
6 2 3
1 2 1 1 0 3
1 6
3 5
outputCopy
7
0
inputCopy
5 3 1
1 1 1 1 1
1 5
2 4
1 3
outputCopy
9
4
4
思路
没有修改只有询问,而且数据量是1e5,那么我们就可以考虑一下莫队了,对原数组做前缀和,然后离线询问,维护区间就行。
代码实现
#include<cstdio>
#include<algorithm>
#include<vector>
#include<queue>
#include<set>
#include<map>
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
#define rep(i,f_start,f_end) for (int i=f_start;i<=f_end;++i)
#define per(i,n,a) for (int i=n;i>=a;i--)
#define MT(x,i) memset(x,i,sizeof(x) )
#define rev(i,start,end) for (int i=start;i<end;i++)
#define inf 0x3f3f3f3f
#define mp(x,y) make_pair(x,y)
#define lowbit(x) (x&-x)
#define MOD 1000000007
#define exp 1e-8
#define N 1000005
#define fi first
#define se second
#define pb push_back
typedef long long ll;
const ll INF=0x3f3f3f3f3f3f3f3f;
typedef vector <int> VI;
typedef pair<int ,int> PII;
typedef pair<int ,PII> PIII;
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;};
void check_max (int &a,int b) { a=max (a,b);}
void check_min (int &a,int b) { a=min (a,b);}
inline int read() {
char ch=getchar(); int x=0, f=1;
while(ch<'0'||ch>'9') {
if(ch=='-') f=-1;
ch=getchar();
} while('0'<=ch&&ch<='9') {
x=x*10+ch-'0';
ch=getchar();
} return x*f;
}
const int maxn=1<<20;
struct node {int l,r,id;}q[maxn];
ll flag[maxn];
int lim;
int a[maxn],i,l,r,k,n,m;
ll ans[maxn];
int pos[maxn];
int L=1,R=0;
ll now=0;
bool cmp (node &a,node &b) {return pos[a.l]==pos[b.l]?a.r<b.r:pos[a.l]<pos[b.l]; }
void add (int x) {
now+=flag[a[x]^k];
flag[a[x]]++;
}
void del (int x) {
flag[a[x]]--;
now-=flag[a[x]^k];
}
void solve () {
scanf ("%d%d%d",&n,&m,&k);
while (lim*lim<n) lim++;
rep (i,1,n) pos[i]=(i-1)/lim+1;
rep (i,1,n) {
scanf ("%d",&a[i]);
a[i]^=a[i-1];
}
rep (i,1,m) {
scanf ("%d%d",&q[i].l,&q[i].r);
q[i].id=i;
}
sort (q+1,q+1+m,cmp);
flag[0]=1;
for (i=l=1,r=0;i<=m;i++) {
int L=q[i].l,R=q[i].r;
if (r<R) {for (r++;r<=R;r++) add (r); r--;}
if (r>R) {for (;r>R;r--) del (r);}
if (l<L) for (;l<L;l++) del (l-1);
if (l>L) {for (l--;l>=L;l--) add (l-1);l++;}
ans[q[i].id]=now;
}
rep (i,1,m) printf ("%lld
",ans[i]);
}
int main () {
int t=1;
while (t--) {
solve ();
}
return 0;
}