• POJ 3233 Matrix Power Series(矩阵快速幂)


    题面

    Matrix Power Series
    Time Limit: 3000MS Memory Limit: 131072K
    Total Submissions: 19338 Accepted: 8161
    Description

    Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

    Input

    The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

    Output

    Output the elements of S modulo m in the same way as A is given.

    Sample Input

    2 2 4
    0 1
    1 1
    Sample Output

    1 2
    2 3

    思路

    这题暴力做肯定没救,我们需要优化。第一种做法是直接去递推矩阵关系,然后构造矩阵进行一个简化的快速幂,这样我们只需要操作一遍快速幂就好了。第二种做法的话,我们可以选择一个二分加速,求法类似于等比数列的二分求法,从数列中项开始提取公因式,不断递归就可以快速求得数列的和了,当然这里我们要把数列当成数字来处理,道理也是一样。所以,矩阵快速幂,包括一些数学题,当它的暴力做法很明显,而数据量又很大的时候,我们要尝试从数据量上去考虑如何加速。这题的话很容易想到二分,另外我们也需要对式子进行数学分析,看看是不是存在一些性质,可以让我们快速求解。

    代码

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int maxn=65;
    int n,mod,k;
    struct Matrix {
        int maze[maxn][maxn];
        Matrix () {
            memset (maze,0,sizeof (maze));
        }
    };
    Matrix mul (Matrix a,Matrix b) {
        Matrix ans;
         for (int i=1;i<=n;i++) 
          for (int j=1;j<=n;j++) {
              for (int k=1;k<=n;k++) 
                  (ans.maze[i][j]+=(a.maze[i][k]*b.maze[k][j])%mod)%=mod;
          }
          return ans;
    }
    Matrix fast_pow (Matrix a,int k) {
        Matrix ans;
        memset (ans.maze,0,sizeof (ans.maze));
        for (int i=1;i<=n;i++) ans.maze[i][i]=1;
        while (k) {
            if (k&1) ans=mul (ans,a);
            a=mul (a,a);
            k>>=1;
        }
        return ans;
    }
    int main () {
        while (cin>>n>>k>>mod) {
            Matrix a,b,c;
            for (int i=1;i<=n;i++)
             for (int j=1;j<=n;j++) {
                 cin>>a.maze[i][j+n];
                 b.maze[i+n][j+n]=a.maze[i][j+n];
             }  
            for (int i=1;i<=n;i++) {
               b.maze[i][i]=1;
               b.maze[i+n][i]=1;
            }
            n=n*2;
            c=mul (a,fast_pow (b,k));
            for (int i=1;i<=n/2;i++)
             for (int j=1;j<=n/2;j++) {
                 if (j==n/2) cout<<c.maze[i][j]<<endl;
                 else cout<<c.maze[i][j]<<" ";
             }
        }
        return 0;
    }
    
    
    
    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int MAXN = 35;
    struct mat
    {
        int a[MAXN][MAXN];
        mat()
        {
            memset(a,0,sizeof(a));
        }
    };
    mat m;
    mat I;
    int n,k,mod;
    mat add(mat m1,mat m2)
    {
        mat ans;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                ans.a[i][j]=(m1.a[i][j]+m2.a[i][j])%mod;
        return ans;
    }
    mat mul(mat m1,mat m2)
    {
        mat ans;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                    for(int k=1;k<=n;k++)
                        ans.a[i][j]=(ans.a[i][j]+m1.a[i][k]*m2.a[k][j])%mod;
        return ans;
    }
    mat quickmul(mat m,int k)
    {
        mat ans;
        for(int i=1;i<=n;i++) ans.a[i][i] = 1;
        while(k)
        {
            if(k&1) ans=mul(ans,m);
            m=mul(m,m);
            k>>=1;
        }
        return ans;
    }
    mat sum(int k)//等比求和
    {
        if(k==1) return m;
        mat t=sum(k/2);
        mat ans;
        if(k&1)
        {
            mat cur=quickmul(m,k/2+1);
            ans=add(mul(add(I,cur),t),cur);
        }
        else
        {
            mat cur=quickmul(m,k/2);
            ans=mul(add(I,cur),t);
        }
        return ans;
    }
    void print(mat m)
    {
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                printf("%d%c",m.a[i][j],j==n? '
    ':' ');
    }
    int main()
    {
        while(~scanf("%d%d%d",&n,&k,&mod))
        {
            for(int i=1;i<=n;i++)
                for(int j=1;j<=n;j++)
                {
                    scanf("%d",&m.a[i][j]);
                    I.a[i][j]=(i==j);
                }
            mat ans=sum(k);
            print(ans);
        }
        return 0;
    }
    
  • 相关阅读:
    cmd运行jar包,生成随机密码
    前端实时搜索框模拟
    JS日期格式化
    批量修改行尾注释(代码规范检查中)
    Java操作某方法时报错:java.lang.NoSuchMethodError
    正则匹配数字
    [转]SSH框架简介
    Java根据地理位置获取经纬度(调用百度地图API)
    [转]DevOps究竟是什么鬼?
    MyEclipse的html页面 design视图中 关闭可视化界面
  • 原文地址:https://www.cnblogs.com/hhlya/p/13287240.html
Copyright © 2020-2023  润新知