• 看球的巴士——线性dp


    【题目描述】

    两个球队的支持者要一起坐车去看球,他们已经排成了一列。我们要让他们分乘若干辆巴士,同一辆巴士上的人必须在队伍中是连续的。为了在车上不起冲突,希望两队的支持者人数尽量相等,差至多是D。有一个例外,就是一辆车上的人全部都是一个球队的支持者。问要将这N个人全部送至球场,至少要几辆巴士。

    输入格式

    第一行是整数N和D,1<=N<=2500,1<=D<=N。

    接下来的N行,按排队的顺序,描述每个人支持的球队,用H或J表示。

    输出格式

    至少要几辆巴士。


    样例

    样例输入

    14 3
    H
    J
    H
    H
    H
    J
    H
    J
    H
    H
    H
    H
    H
    H
    

    样例输出

    2

    【思路分析】
         说实话一开始看见这道题觉得是区间dp,but  ……这就很尴尬了
    •  还是逐步分析吧,首先从最初情况入手,i个人,至多i个大巴(显然不会用这么多,但是要在此基础上处理),那么f[i]要怎么处理呢
    • 在前i个人中,不难发现可以乘坐大巴的情况有可能有很多,所有我们从1~j(j<=i)依次跑一边,看能否将其放在一个大巴里,如果可以,那(j,i)区的人用一个大巴就可以装下了,而(1,j)区间内已经处理好,直接拿过来就可以了,推出转移方程为 f[i] = max(f[i],f[j]+1),转移方程想好了,接下来的就比较简单了
    • 既然是对区间进行处理,那么我们记录数据就选择用前缀和数组,用前缀和数组H[i]记录H方的人数,J[i]数组记录J方的人数,我们只需找出哪些区间里的人可以乘坐一辆大巴就行了,分为两种:

         1.整个大巴上都是同一个球队的球迷,那显然(j,i)区间的长度,就是H数组或J数组在这个区间内的个数:

           合法条件为:H[j] - H[i-1] == j-i+1 || J[j] - J[i-1] == j-i+1 

         2.大巴上有两个球队的球迷,那在(i,j)区间内两个数组的差值就要小于等于D:

           合法条件为:abs(J[j]-J[i-1]-(H[j]-H[i-1])) <= d

    细节见代码注释

    【代码】

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<algorithm>
     4 using namespace std;
     5 const int N = 2500+10;
     6 int n,d;
     7 int f[N],H[N],J[N],v[N][N];
     8 int main(){
     9     scanf("%d%d",&n,&d);
    10     for(int i = 1;i <= n;i++){
    11         char c;scanf(" %c",&c); //注意加空格!!!
    12         if(c=='H'){   //前缀和数组依次赋值
    13             H[i] = H[i-1]+1;   
    14             J[i] = J[i-1];
    15         }
    16         else{
    17             J[i] = J[i-1]+1;
    18             H[i] = H[i-1];
    19         }
    20         f[i] = i;
    21     }
    22     for(int i = 1;i <= n;i++){//找出可以乘坐同一辆大巴的区间
    23         for(int j = i;j <= n;j++){ //关键点,注意下标不要弄错,减去的是H[i-1]或J[i-1],差值减去的也同样是i-1,才能代表(i,j)区间
    24             if(H[j] - H[i-1] == j-i+1 || J[j] - J[i-1] == j-i+1 || abs(J[j]-J[i-1]-(H[j]-H[i-1])) <= d){
    25                 v[i][j] = 1;
    26             }
    27         }
    28     }
    29     for(int i = 1;i <= n;i++){ //dp环节
    30         for(int j= 1;j <= i;j++){
    31             if(v[j][i])f[i] = min(f[i],f[j-1]+1);//这是减去j-1,查错查了半天
    32         }
    33     }
    34     printf("%d",f[n]);
    35     return 0;
    36 }
  • 相关阅读:
    微软发布TFS 2018!
    Git小技巧:VIM中如何填写注释信息
    为某金融企业的IT技术部人员提供基于TFS的软件研发流程介绍
    【TFS 2017】使用浏览器上传文件(TFVC)或者编辑代码,错误提示TF14098,需要对文件有PendChange 权限
    TFS 2017 培训
    签入代码(新建分支,新建推拉请求)关联工作项,却找不到自己需要的工作项
    TFS支持移动设备,微软已经走出了第一步(手机上更新、查询工作项)
    在TFS持续集成(持续发布)中执行Telnet任务
    Nginx
    单点登录
  • 原文地址:https://www.cnblogs.com/hhhhalo/p/12773352.html
Copyright © 2020-2023  润新知