• 【强化学习】python 实现 q-learning 例二


    本文作者:hhh5460

    本文地址:https://www.cnblogs.com/hhh5460/p/10134855.html

    问题情境

    一个2*2的迷宫,一个入口,一个出口,还有一个陷阱。如图

    (图片来源:https://jizhi.im/blog/post/intro_q_learning)

     这是一个二维的问题,不过我们可以把这个降维,变为一维的问题。

    感谢:https://jizhi.im/blog/post/intro_q_learning。网上看了无数文章,无数代码,都不得要领!直到看了这篇里面的三个矩阵:reward,transition_matrix,valid_actions才真正理解q-learning算法如何操作,如何实现!

     Kaiser的代码先睹为快,绝对让你秒懂q-learning算法,当然我也做了部分润色:

    import numpy as np
    import random
    
    '''
    2*2的迷宫
    ---------------
    | 入口 |      |
    ---------------
    | 陷阱 | 出口 |
    ---------------
    # 来源:https://jizhi.im/blog/post/intro_q_learning
    
    每个格子是一个状态,此时都有上下左右停5个动作
    
    任务:通过学习,找到一条通径
    '''
    
    gamma = 0.7
    
    #                    u,   d,   l,  r,  n
    reward = np.array([( 0, -10,   0, -1, -1), #0,状态0
                       ( 0,  10,  -1,  0, -1), #1
                       (-1,   0,   0, 10, -1), #2
                       (-1,   0, -10,  0, 10)],#3
                       dtype=[('u',float),('d',float),('l',float),('r',float),('n',float)])
    
    q_matrix = np.zeros((4, ),
                        dtype=[('u',float),('d',float),('l',float),('r',float),('n',float)])
    
    transition_matrix = np.array([(-1,  2, -1,  1, 0), # 如 state:0,action:'d' --> next_state:2
                                  (-1,  3,  0, -1, 1),
                                  ( 0, -1, -1,  3, 2),
                                  ( 1, -1,  2, -1, 3)],
                                  dtype=[('u',int),('d',int),('l',int),('r',int),('n',int)])
    
    valid_actions = np.array([['d', 'r', 'n'], #0,状态0
                              ['d', 'l', 'n'], #1
                              ['u', 'r', 'n'], #2
                              ['u', 'l', 'n']])#3
    
    
    for i in range(1000):
        current_state = 0
        while current_state != 3:
            current_action = random.choice(valid_actions[current_state]) # 只有探索,没有利用
            
            next_state = transition_matrix[current_state][current_action]
            next_reward = reward[current_state][current_action]
            next_q_values = [q_matrix[next_state][next_action] for next_action in valid_actions[next_state]] #待取最大值
            
            q_matrix[current_state][current_action] = next_reward + gamma * max(next_q_values) # 贝尔曼方程(不完整)
            current_state = next_state
    
    print('Final Q-table:')
    print(q_matrix)
    View Code

    0.相关参数

    epsilon = 0.9   # 贪婪度 greedy
    alpha = 0.1     # 学习率
    gamma = 0.8     # 奖励递减值

    1.状态集

    探索者的状态,即其可到达的位置,有4个。所以定义

    states = range(4) # 状态集,从0到3

    那么,在某个状态下执行某个动作之后,到达的下一个状态如何确定呢?

    def get_next_state(state, action):
        '''对状态执行动作后,得到下一状态'''
        #u,d,l,r,n = -2,+2,-1,+1,0
        if state % 2 != 1 and action == 'r':    # 除最后一列,皆可向右(+1)
            next_state = state + 1
        elif state % 2 != 0 and action == 'l':  # 除最前一列,皆可向左(-1)
            next_state = state -1
        elif state // 2 != 1 and action == 'd': # 除最后一行,皆可向下(+2)
            next_state = state + 2
        elif state // 2 != 0 and action == 'u': # 除最前一行,皆可向上(-2)
            next_state = state - 2
        else:
            next_state = state
        return next_state

    2.动作集

    探索者处于每个状态时,可行的动作,只有上下左右4个。所以定义

    actions = ['u', 'd', 'l', 'r'] # 动作集。上下左右,也可添加动作'n',表示停留

    那么,在某个给定的状态(位置),其所有的合法动作如何确定呢?

    def get_valid_actions(state):
        '''取当前状态下的合法动作集合,与reward无关!'''
        global actions # ['u','d','l','r','n']
        
        valid_actions = set(actions)
        if state % 2 == 1:                              # 最后一列,则
            valid_actions = valid_actions - set(['r'])  # 去掉向右的动作
        if state % 2 == 0:                              # 最前一列,则
            valid_actions = valid_actions - set(['l'])  # 去掉向左
        if state // 2 == 1:                             # 最后一行,则
            valid_actions = valid_actions - set(['d'])  # 去掉向下
        if state // 2 == 0:                             # 最前一行,则
            valid_actions = valid_actions - set(['u'])  # 去掉向上
        return list(valid_actions)

    3.奖励集

    探索者到达每个状态(位置)时,要有奖励。所以定义

    rewards = [0,0,-10,10] # 奖励集。到达位置3(出口)奖励10,位置2(陷阱)奖励-10,其他皆为0

    显然,取得某状态state下的奖励就很简单了:rewards[state] 。根据state,按图索骥即可,无需额外定义一个函数。

    4.Q table

    最重要。Q table是一种记录状态-行为值 (Q value) 的表。常见的q-table都是二维的,基本长下面这样:

     注意,也有3维的Q table)

    所以定义

    q_table = pd.DataFrame(data=[[0 for _ in actions] for _ in states],
                           index=states, columns=actions)

    5.Q-learning算法

    Q-learning算法的伪代码

    Q value的更新是根据贝尔曼方程:

    $$Q(s_t,a_t) leftarrow Q(s_t,a_t) + alpha[r_{t+1} + lambda max _{a} Q(s_{t+1}, a) - Q(s_t,a_t)] ag {1}$$

    好吧,是时候实现它了:

    # 总共探索300次
    for i in range(300):
        # 0.从最左边的位置开始(不是必要的)
        current_state = 0
        #current_state = random.choice(states)
        while current_state != states[-1]:
            # 1.取当前状态下的合法动作中,随机(或贪婪)地选一个作为 当前动作
            if (random.uniform(0,1) > epsilon) or ((q_table.ix[current_state] == 0).all()):  # 探索
                current_action = random.choice(get_valid_actions(current_state))
            else:
                current_action = q_table.ix[current_state].idxmax() # 利用(贪婪)
            # 2.执行当前动作,得到下一个状态(位置)
            next_state = get_next_state(current_state, current_action)
            # 3.取下一个状态所有的Q value,待取其最大值
            next_state_q_values = q_table.ix[next_state, get_valid_actions(next_state)]
            # 4.根据贝尔曼方程,更新 Q table 中当前状态-动作对应的 Q value
            q_table.ix[current_state, current_action] += alpha * (rewards[next_state] + gamma * next_state_q_values.max() - q_table.ix[current_state, current_action])
            # 5.进入下一个状态(位置)
            current_state = next_state
    
    print('
    q_table:')
    print(q_table)

    可以看到,与例一的代码一模一样,不差一字!

    6.环境及其更新

    这里的环境貌似必须用到GUI,有点麻烦;而在命令行下,我又不知如何实现。所以暂时算了,不搞了。

    7.完整代码

    '''
    最简单的四个格子的迷宫
    ---------------
    | start |     |
    ---------------
    |  die  | end |
    ---------------
    
    每个格子是一个状态,此时都有上下左右4个动作

    作者:hhh5460
    时间:20181217
    ''' import pandas as pd import random epsilon = 0.9 # 贪婪度 greedy alpha = 0.1 # 学习率 gamma = 0.8 # 奖励递减值 states = range(4) # 0, 1, 2, 3 四个状态 actions = list('udlr') # 上下左右 4个动作。还可添加动作'n',表示停留 rewards = [0,0,-10,10] # 奖励集。到达位置3(出口)奖励10,位置2(陷阱)奖励-10,其他皆为0 q_table = pd.DataFrame(data=[[0 for _ in actions] for _ in states], index=states, columns=actions) def get_next_state(state, action): '''对状态执行动作后,得到下一状态''' #u,d,l,r,n = -2,+2,-1,+1,0 if state % 2 != 1 and action == 'r': # 除最后一列,皆可向右(+1) next_state = state + 1 elif state % 2 != 0 and action == 'l': # 除最前一列,皆可向左(-1) next_state = state -1 elif state // 2 != 1 and action == 'd': # 除最后一行,皆可向下(+2) next_state = state + 2 elif state // 2 != 0 and action == 'u': # 除最前一行,皆可向上(-2) next_state = state - 2 else: next_state = state return next_state def get_valid_actions(state): '''取当前状态下的合法动作集合 global reward valid_actions = reward.ix[state, reward.ix[state]!=0].index return valid_actions ''' # 与reward无关! global actions valid_actions = set(actions) if state % 2 == 1: # 最后一列,则 valid_actions = valid_actions - set(['r']) # 无向右的动作 if state % 2 == 0: # 最前一列,则 valid_actions = valid_actions - set(['l']) # 无向左 if state // 2 == 1: # 最后一行,则 valid_actions = valid_actions - set(['d']) # 无向下 if state // 2 == 0: # 最前一行,则 valid_actions = valid_actions - set(['u']) # 无向上 return list(valid_actions) # 总共探索300次 for i in range(300): # 0.从最左边的位置开始(不是必要的) current_state = 0 #current_state = random.choice(states) while current_state != states[-1]: # 1.取当前状态下的合法动作中,随机(或贪婪)地选一个作为 当前动作 if (random.uniform(0,1) > epsilon) or ((q_table.ix[current_state] == 0).all()): # 探索 current_action = random.choice(get_valid_actions(current_state)) else: current_action = q_table.ix[current_state].idxmax() # 利用(贪婪) # 2.执行当前动作,得到下一个状态(位置) next_state = get_next_state(current_state, current_action) # 3.取下一个状态所有的Q value,待取其最大值 next_state_q_values = q_table.ix[next_state, get_valid_actions(next_state)] # 4.根据贝尔曼方程,更新 Q table 中当前状态-动作对应的 Q value q_table.ix[current_state, current_action] += alpha * (rewards[next_state] + gamma * next_state_q_values.max() - q_table.ix[current_state, current_action]) # 5.进入下一个状态(位置) current_state = next_state print(' q_table:') print(q_table)

    8.效果图

    9.补充

    又搞了一个numpy版本,比pandas版本的快了一个数量级!!代码如下

    '''
    最简单的四个格子的迷宫
    ---------------
    | start |     |
    ---------------
    |  die  | end |
    ---------------
    
    每个格子是一个状态,此时都有上下左右停5个动作
    '''
    
    # 作者:hhh5460
    # 时间:20181218
    
    import numpy as np
    
    
    epsilon = 0.9   # 贪婪度 greedy
    alpha = 0.1     # 学习率
    gamma = 0.8     # 奖励递减值
    
    states = range(4)       # 0, 1, 2, 3 四个状态
    actions = list('udlrn') # 上下左右停 五个动作
    rewards = [0,0,-10,10]  # 奖励集。到达位置3(出口)奖励10,位置2(陷阱)奖励-10,其他皆为0
    
    
    # 给numpy数组的列加标签,参考https://cloud.tencent.com/developer/ask/72790
    q_table = np.zeros(shape=(4, ), # 坑二:这里不能是(4,5)!!
                       dtype=list(zip(actions, ['float']*5)))
                       #dtype=[('u',float),('d',float),('l',float),('r',float),('n',float)])
                       #dtype={'names':actions, 'formats':[float]*5})
    
    def get_next_state(state, action):
        '''对状态执行动作后,得到下一状态'''
        #u,d,l,r,n = -2,+2,-1,+1,0
        if state % 2 != 1 and action == 'r':    # 除最后一列,皆可向右(+1)
            next_state = state + 1
        elif state % 2 != 0 and action == 'l':  # 除最前一列,皆可向左(-1)
            next_state = state -1
        elif state // 2 != 1 and action == 'd': # 除最后一行,皆可向下(+2)
            next_state = state + 2
        elif state // 2 != 0 and action == 'u': # 除最前一行,皆可向上(-2)
            next_state = state - 2
        else:
            next_state = state
        return next_state
            
    
    def get_valid_actions(state):
        '''取当前状态下的合法动作集合,与reward无关!'''
        global actions # ['u','d','l','r','n']
        
        valid_actions = set(actions)
        if state % 2 == 1:                              # 最后一列,则
            valid_actions = valid_actions - set(['r'])  # 去掉向右的动作
        if state % 2 == 0:                              # 最前一列,则
            valid_actions = valid_actions - set(['l'])  # 去掉向左
        if state // 2 == 1:                             # 最后一行,则
            valid_actions = valid_actions - set(['d'])  # 去掉向下
        if state // 2 == 0:                             # 最前一行,则
            valid_actions = valid_actions - set(['u'])  # 去掉向上
        return list(valid_actions)
        
        
    for i in range(1000):
        #current_state = states[0] # 固定
        current_state = np.random.choice(states,1)[0]
        while current_state != 3:
            if (np.random.uniform() > epsilon) or ((np.array(list(q_table[current_state])) == 0).all()):  # q_table[current_state]是numpy.void类型,只能这么操作!!
                current_action = np.random.choice(get_valid_actions(current_state), 1)[0]
            else:
                current_action = actions[np.array(list(q_table[current_state])).argmax()] # q_table[current_state]是numpy.void类型,只能这么操作!!
            next_state = get_next_state(current_state, current_action)
            next_state_q_values = [q_table[next_state][action] for action in get_valid_actions(next_state)]
            q_table[current_state][current_action] = rewards[next_state] + gamma * max(next_state_q_values)
            current_state = next_state
            
            
    print('Final Q-table:')
    print(q_table)
    View Code

    10.补充2:三维Q table实现!

    经过不断的试验,终于撸出了一个三维版的Q table,代码如下!

    '''
    最简单的四个格子的迷宫
    ---------------
    | start |     |
    ---------------
    |  die  | end |
    ---------------
    
    每个格子是一个状态,此时都有上下左右停5个动作
    '''
    
    '''三维 Q table 版!!'''
    
    # 作者:hhh5460
    # 时间:20181218
    
    import numpy as np
    import random # np.random.choice不能选二维元素!
    
    epsilon = 0.9   # 贪婪度 greedy
    alpha = 0.1     # 学习率
    gamma = 0.8     # 奖励递减值
    
    states = [(0,0),(0,1),(1,0),(1,1)] #状态集,四个位置
    actions = [(-1,0),(1,0),(0,-1),(0,1)] #动作集,上下左右
    rewards = [[  0., 0.],    # 奖励集
               [-10.,10.]]
    
    # q_table是三维的,注意把动作放在了第三维!
    # 最里面的[0.,0.,0.,0.]表示某一个状态(格子)对应的四个动作“上下左右”的Q value
    q_table = np.array([[[0.,0.,0.,0.],[0.,0.,0.,0.]],
                        [[0.,0.,0.,0.],[0.,0.,0.,0.]]])
    
    def get_next_state(state, action):
        '''对状态执行动作后,得到下一状态'''
        if ((state[1] == 1 and action == (0,1))  or # 最后一列、向右
            (state[1] == 0 and action == (0,-1)) or # 最前一列、向左
            (state[0] == 1 and action == (1,0))  or # 最后一行、向下
            (state[0] == 0 and action == (-1,0))):  # 最前一行、向上
            next_state = state
        else:
            next_state = (state[0] + action[0], state[1] + action[1])
        return next_state
        
    def get_valid_actions(state):
        '''取当前状态下的合法动作集合'''
        valid_actions = []
        if state[1] < 1:  # 除最后一列,可向右
            valid_actions.append((0,1))
        if state[1] > 0:  # 除最前一列,可向左(-1)
            valid_actions.append((0,-1))
        if state[0] < 1:  # 除最后一行,可向下
            valid_actions.append((1,0))
        if state[0] > 0:  # 除最前一行,可向上
            valid_actions.append((-1,0))
        return valid_actions
    
    # 总共探索300次
    for i in range(1000):
        # 0.从最左边的位置开始(不是必要的)
        current_state = (0,0)
        #current_state = random.choice(states)
        #current_state = tuple(np.random.randint(2, size=2))
        while current_state != states[-1]:
            # 1.取当前状态下的合法动作中,随机(或贪婪)地选一个作为 当前动作
            if (np.random.uniform() > epsilon) or ((q_table[current_state[0],current_state[1]] == 0).all()):  # 探索
                current_action = random.choice(get_valid_actions(current_state))
            else:
                current_action = actions[q_table[current_state[0],current_state[1]].argmax()] # 利用(贪婪)
            # 2.执行当前动作,得到下一个状态(位置)
            next_state = get_next_state(current_state, current_action)
            # 3.取下一个状态所有的Q value,待取其最大值
            next_state_q_values = [q_table[next_state[0],next_state[1],actions.index(action)] for action in get_valid_actions(next_state)]
            # 4.根据贝尔曼方程,更新 Q table 中当前状态-动作对应的 Q value
            q_table[current_state[0],current_state[1],actions.index(current_action)] += alpha * (rewards[next_state[0]][next_state[1]] + gamma * max(next_state_q_values) - q_table[current_state[0],current_state[1],actions.index(current_action)])
            # 5.进入下一个状态(位置)
            current_state = next_state
    
    
    print('
    q_table:')
    print(q_table)
    View Code

     11.课后思考题

    有缘看到此文的朋友,请尝试下实现更大规模的迷宫问题,评论交作业哦。迷宫如下:

     (图片来源:https://jizhi.im/blog/post/intro_q_learning)

  • 相关阅读:
    注意事项 软件连接的数据库是设置输出的数据库,弄错会造成数据库不一致
    归并排序
    快速排序
    冒泡排序
    插入排序
    上次遗留下来的XMLUtil的问题
    关于子网掩码
    java.lang.InstantiationException
    java.lang.ExceptionInInitializerError
    关于HashMap中的负载因子
  • 原文地址:https://www.cnblogs.com/hhh5460/p/10134855.html
Copyright © 2020-2023  润新知