• Autoware 笔记No.7, CNN障碍物检测(CNN LiDAR Baidu Object Segmenter)


    前言:测试一下Autoware 下的 CNN LiDAR Baidu Object Segmenter。我的环境是Ubuntu18.04+CUDA10.0+cudnn+ros melodic+opencv4

    因为遇到了太多的坑,分享个大家,顺便也留一个记录。

    安装最坑的是这个错误:undefined reference to google::FlagRegisterer::FlagRegisterer,找了很多资料也没有解决,所以我就搜索了所有的gflags和glog相关的文件,并将他们删除,然后重新安装,问题得到解决。

    CUDA10.0 与 cudnn的安装参见:https://www.cnblogs.com/hgl0417/p/11844135.html

    1. 安装opencv

    (1)安装依赖:

    $ sudo apt install build-essential cmake git pkg-config libgtk-3-dev
    $ sudo apt install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev libxvidcore-dev libx264-dev
    $ sudo apt install libjpeg-dev libpng-dev libtiff-dev gfortran openexr libatlas-base-dev
    $ sudo apt install python3-dev python3-numpy libtbb2 libtbb-dev libdc1394-22-dev

    (2)下载源码

    $ mkdir ~/opencv_build && cd ~/opencv_build
    $ wget https://github.com/opencv/opencv/archive/3.4.0.zip -O opencv-3.4.0.zip
    $ wget https://github.com/opencv/opencv_contrib/archive/3.4.0.zip -O opencv_contrib-3.4.0.zip
    $ unzip opencv-3.4.0.zip
    $ unzip opencv_contrib-3.4.0.zip

    用CUDA 10.0以上版本编译opencv3.0以上版本,会报错:找不到dynlink_nvcuvid.h

    需要下载:https://developer.nvidia.com/designworks/video_codec_sdk/downloads/v8.2-ga2,解压Video_Codec_SDK_8.2.16.zip

    unzip Video_Codec_SDK_8.2.16.zip

    在~/Downloads/Video_Codec_SDK_8.2.16/Samples/NvCodec/NvDecoder/找到cuviddec.h,在~/Downloads/Video_Codec_SDK_8.2.16/Samples/NvCodec/NvDecoder/找到nvcuvid.h,讲这两个文件拷贝到/usr/local/cuda/include/。

    $ sudo cp ~/Downloads/Video_Codec_SDK_8.2.16/Samples/NvCodec/NvDecoder/cuviddec.h /usr/local/cuda/include/
    $ sudo cp ~/Downloads/Video_Codec_SDK_8.2.16/Samples/NvCodec/NvDecoder/nvcuvid.h /usr/local/cuda/include/

    修改opencv-3.4.0下的modules下的一些头文件:

    modules/cudacodec/src/precomp.hpp
    modules/cudacodec/src/frame_queue.hpp
    modules/cudacodec/src/cuvid_video_source.hpp
    modules/cudacodec/src/video_decoder.hpp
    modules/cudacodec/src/video_parser.hpp

    将这些文件的

    #if CUDA_VERSION >= 9000
        #include <dynlink_nvcuvid.h>
    #else
        #include <nvcuvid.h>
    
    改为:
    
    #if CUDA_VERSION >= 9000 && CUDA_VERSION < 10000
        #include <dynlink_nvcuvid.h>
    #else
        #include <nvcuvid.h>

    编译,安装

    $ cd ~/opencv_build/opencv-3.4.0 && mkdir build && cd build
    $ cmake -DCMAKE_BUILD_TYPE=RELEASE 
    -DCMAKE_INSTALL_PREFIX=/usr/local 
    -DINSTALL_PYTHON_EXAMPLES=ON 
    -DINSTALL_C_EXAMPLES=OFF 
    -DOPENCV_EXTRA_MODULES_PATH=/home/leon/opencv_build/opencv_contrib-3.4.0/modules 
    -DPYTHON_EXCUTABLE=/usr/bin/python2.7 
    -DWITH_CUDA=ON 
    -DWITH_CUBLAS=ON 
    -DDCUDA_NVCC_FLAGS="-D_FORCE_INLINES" 
    -DCUDA_ARCH_BIN="6.1" 
    -DCUDA_ARCH_PTX="" 
    -DCUDA_FAST_MATH=ON 
    -DWITH_TBB=ON 
    -DWITH_V4L=ON 
    -DWITH_GTK=ON 
    -DWITH_OPENGL=ON 
    -DCMAKE_C_COMPILER=/usr/bin/gcc-7 
    -DCUDA_HOST_COMPILER=/usr/bin/g++-7 
    -DCUDA_PROPAGATE_HOST_FLAGS=oFF 
    -DCMAKE_CXX_FLAGS="-std=c++11" 
    -DBUILD_TIFF=ON 
    -DBUILD_EXAMPLES=ON ..
    $ make -j$nproc
    $ sudo make install

    查看opencv版本

    $ pkg-config opencv --modversion

    2. 安装hdf5

    如果没有安装hdf5,可以从 https://support.hdfgroup.org/ftp/HDF5/releases/hdf5-1.8/hdf5-1.8.21/src/ 下载hdf5-1.8.21.tar.gz,默认下载到Downloads文件夹。

    解压hdf5-1.8.21.tar.gz

    $ cd ~/Downloads
    $ tar -xvf hdf5-1.8.21.tar.gz
    $ sudo mv -f hdf5-1.8.21/ /opt
    $ cd /opt/hdf5-1.8.21/

    编译安装hdf5

    $ sudo ./configure --prefix=/usr/local/hdf5
    $ sudo make
    $ sudo make check
    $ sudo make install

    安装成功后,在安装目录/usr/local下出现hdf5文件夹,打开后有/bin,/include,/lib,/share四个文件夹

    安装成功后,测试

    $ cd /usr/local/hdf5/share/hdf5_examples/c
    $ sudo ./run-c-ex.sh

     执行命令

    $ sudo h5cc -o h5_extend h5_extend.c

    如果出现sudo: h5cc: command not found,那么执行

    $ sudo apt install hdf5-helpers

    再次执行 

    $ sudo h5cc -o h5_extend h5_extend.c

    如果出现hdf5.h not found,执行

    sudo apt-get install libhdf5-serial-dev

    这是应该没有错误提示。

    在执行

    $ sudo ./h5_extend

    安装完毕,显示

    Dataset: 
    1 1 1 
    1 1 1 
    1 1 1 
    2 3 4 
    2 3 4 
    2 3 4 
    2 3 4 
    2 3 4 
    2 3 4 
    2 3 4 

      

    2. 安装caffe相关的package

    $ sudo apt install -y libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
    $ sudo apt install -y --no-install-recommends libboost-all-dev
    $ sudo apt install -y libopenblas-dev #libatlas-base-dev
    $ sudo apt install -y libgflags-dev libgoogle-glog-dev liblmdb-dev

    3. 下载/安装caffe

    下载:

    $ git clone https://github.com/BVLC/caffe.git

    修改Makefile.config

    $ cd /caffe
    $ cp Makefile.config.example Makefile.config

    编辑Makefile.config,这里我参考了网上很多的资料,所以我直接贴上我自己的Makefile.config。

    ## Refer to http://caffe.berkeleyvision.org/installation.html
    # Contributions simplifying and improving our build system are welcome!
    
    # cuDNN acceleration switch (uncomment to build with cuDNN).
    USE_CUDNN := 1
    
    # CPU-only switch (uncomment to build without GPU support).
    # CPU_ONLY := 1
    
    # uncomment to disable IO dependencies and corresponding data layers
    USE_OPENCV := 1
    # USE_LEVELDB := 0
    # USE_LMDB := 0
    # This code is taken from https://github.com/sh1r0/caffe-android-lib
    # USE_HDF5 := 0
    
    # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
    #    You should not set this flag if you will be reading LMDBs with any
    #    possibility of simultaneous read and write
    # ALLOW_LMDB_NOLOCK := 1
    
    # Uncomment if you're using OpenCV 3
    OPENCV_VERSION := 3.4.0
    
    # To customize your choice of compiler, uncomment and set the following.
    # N.B. the default for Linux is g++ and the default for OSX is clang++
    CUSTOM_CXX := g++
    
    # CUDA directory contains bin/ and lib/ directories that we need.
    CUDA_DIR := /usr/local/cuda
    # On Ubuntu 14.04, if cuda tools are installed via
    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
    # CUDA_DIR := /usr
    
    # CUDA architecture setting: going with all of them.
    # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
    # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
    # For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
    CUDA_ARCH := -gencode arch=compute_30,code=sm_30 
            -gencode arch=compute_35,code=sm_35 
            -gencode arch=compute_50,code=sm_50 
            -gencode arch=compute_52,code=sm_52 
            -gencode arch=compute_60,code=sm_60 
            -gencode arch=compute_61,code=sm_61 
            -gencode arch=compute_61,code=compute_61
    
    # BLAS choice:
    # atlas for ATLAS (default)
    # mkl for MKL
    # open for OpenBlas
    BLAS := atlas
    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
    # Leave commented to accept the defaults for your choice of BLAS
    # (which should work)!
    # BLAS_INCLUDE := /path/to/your/blas
    # BLAS_LIB := /path/to/your/blas
    
    # Homebrew puts openblas in a directory that is not on the standard search path
    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
    # BLAS_LIB := $(shell brew --prefix openblas)/lib
    
    # This is required only if you will compile the matlab interface.
    # MATLAB directory should contain the mex binary in /bin.
    # MATLAB_DIR := /usr/local
    # MATLAB_DIR := /Applications/MATLAB_R2012b.app
    
    # NOTE: this is required only if you will compile the python interface.
    # We need to be able to find Python.h and numpy/arrayobject.h.
    PYTHON_INCLUDE := /usr/include/python2.7 
            /usr/lib/python2.7/dist-packages/numpy/core/include
    # Anaconda Python distribution is quite popular. Include path:
    # Verify anaconda location, sometimes it's in root.
    # ANACONDA_HOME := $(HOME)/anaconda
    # PYTHON_INCLUDE := $(ANACONDA_HOME)/include 
            # $(ANACONDA_HOME)/include/python2.7 
            # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
    
    # Uncomment to use Python 3 (default is Python 2)
    # PYTHON_LIBRARIES := boost_python3 python3.5m
    # PYTHON_INCLUDE := /usr/include/python3.5m 
    #                 /usr/lib/python3.5/dist-packages/numpy/core/include
    
    # We need to be able to find libpythonX.X.so or .dylib.
    PYTHON_LIB := /usr/lib
    # PYTHON_LIB := $(ANACONDA_HOME)/lib
    
    # Homebrew installs numpy in a non standard path (keg only)
    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
    # PYTHON_LIB += $(shell brew --prefix numpy)/lib
    
    # Uncomment to support layers written in Python (will link against Python libs)
    WITH_PYTHON_LAYER := 1
    
    # Whatever else you find you need goes here.
    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/ /usr/local/hdf5/include/
    LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/local/hdf5/lib/
    
    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
    # INCLUDE_DIRS += $(shell brew --prefix)/include
    # LIBRARY_DIRS += $(shell brew --prefix)/lib
    
    # NCCL acceleration switch (uncomment to build with NCCL)
    # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
    # USE_NCCL := 1
    
    # Uncomment to use `pkg-config` to specify OpenCV library paths.
    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
    # USE_PKG_CONFIG := 1
    
    # N.B. both build and distribute dirs are cleared on `make clean`
    BUILD_DIR := build
    DISTRIBUTE_DIR := distribute
    
    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
    # DEBUG := 1
    
    # The ID of the GPU that 'make runtest' will use to run unit tests.
    TEST_GPUID := 0
    
    # enable pretty build (comment to see full commands)
    Q ?= @

    Makefile文件

    PROJECT := caffe
    
    CONFIG_FILE := Makefile.config
    # Explicitly check for the config file, otherwise make -k will proceed anyway.
    ifeq ($(wildcard $(CONFIG_FILE)),)
    $(error $(CONFIG_FILE) not found. See $(CONFIG_FILE).example.)
    endif
    include $(CONFIG_FILE)
    
    BUILD_DIR_LINK := $(BUILD_DIR)
    ifeq ($(RELEASE_BUILD_DIR),)
        RELEASE_BUILD_DIR := .$(BUILD_DIR)_release
    endif
    ifeq ($(DEBUG_BUILD_DIR),)
        DEBUG_BUILD_DIR := .$(BUILD_DIR)_debug
    endif
    
    DEBUG ?= 0
    ifeq ($(DEBUG), 1)
        BUILD_DIR := $(DEBUG_BUILD_DIR)
        OTHER_BUILD_DIR := $(RELEASE_BUILD_DIR)
    else
        BUILD_DIR := $(RELEASE_BUILD_DIR)
        OTHER_BUILD_DIR := $(DEBUG_BUILD_DIR)
    endif
    
    # All of the directories containing code.
    SRC_DIRS := $(shell find * -type d -exec bash -c "find {} -maxdepth 1 
        ( -name '*.cpp' -o -name '*.proto' ) | grep -q ." ; -print)
    
    # The target shared library name
    LIBRARY_NAME := $(PROJECT)
    LIB_BUILD_DIR := $(BUILD_DIR)/lib
    STATIC_NAME := $(LIB_BUILD_DIR)/lib$(LIBRARY_NAME).a
    DYNAMIC_VERSION_MAJOR         := 1
    DYNAMIC_VERSION_MINOR         := 0
    DYNAMIC_VERSION_REVISION     := 0
    DYNAMIC_NAME_SHORT := lib$(LIBRARY_NAME).so
    #DYNAMIC_SONAME_SHORT := $(DYNAMIC_NAME_SHORT).$(DYNAMIC_VERSION_MAJOR)
    DYNAMIC_VERSIONED_NAME_SHORT := $(DYNAMIC_NAME_SHORT).$(DYNAMIC_VERSION_MAJOR).$(DYNAMIC_VERSION_MINOR).$(DYNAMIC_VERSION_REVISION)
    DYNAMIC_NAME := $(LIB_BUILD_DIR)/$(DYNAMIC_VERSIONED_NAME_SHORT)
    COMMON_FLAGS += -DCAFFE_VERSION=$(DYNAMIC_VERSION_MAJOR).$(DYNAMIC_VERSION_MINOR).$(DYNAMIC_VERSION_REVISION)
    
    ##############################
    # Get all source files
    ##############################
    # CXX_SRCS are the source files excluding the test ones.
    CXX_SRCS := $(shell find src/$(PROJECT) ! -name "test_*.cpp" -name "*.cpp")
    # CU_SRCS are the cuda source files
    CU_SRCS := $(shell find src/$(PROJECT) ! -name "test_*.cu" -name "*.cu")
    # TEST_SRCS are the test source files
    TEST_MAIN_SRC := src/$(PROJECT)/test/test_caffe_main.cpp
    TEST_SRCS := $(shell find src/$(PROJECT) -name "test_*.cpp")
    TEST_SRCS := $(filter-out $(TEST_MAIN_SRC), $(TEST_SRCS))
    TEST_CU_SRCS := $(shell find src/$(PROJECT) -name "test_*.cu")
    GTEST_SRC := src/gtest/gtest-all.cpp
    # TOOL_SRCS are the source files for the tool binaries
    TOOL_SRCS := $(shell find tools -name "*.cpp")
    # EXAMPLE_SRCS are the source files for the example binaries
    EXAMPLE_SRCS := $(shell find examples -name "*.cpp")
    # BUILD_INCLUDE_DIR contains any generated header files we want to include.
    BUILD_INCLUDE_DIR := $(BUILD_DIR)/src
    # PROTO_SRCS are the protocol buffer definitions
    PROTO_SRC_DIR := src/$(PROJECT)/proto
    PROTO_SRCS := $(wildcard $(PROTO_SRC_DIR)/*.proto)
    # PROTO_BUILD_DIR will contain the .cc and obj files generated from
    # PROTO_SRCS; PROTO_BUILD_INCLUDE_DIR will contain the .h header files
    PROTO_BUILD_DIR := $(BUILD_DIR)/$(PROTO_SRC_DIR)
    PROTO_BUILD_INCLUDE_DIR := $(BUILD_INCLUDE_DIR)/$(PROJECT)/proto
    # NONGEN_CXX_SRCS includes all source/header files except those generated
    # automatically (e.g., by proto).
    NONGEN_CXX_SRCS := $(shell find 
        src/$(PROJECT) 
        include/$(PROJECT) 
        python/$(PROJECT) 
        matlab/+$(PROJECT)/private 
        examples 
        tools 
        -name "*.cpp" -or -name "*.hpp" -or -name "*.cu" -or -name "*.cuh")
    LINT_SCRIPT := scripts/cpp_lint.py
    LINT_OUTPUT_DIR := $(BUILD_DIR)/.lint
    LINT_EXT := lint.txt
    LINT_OUTPUTS := $(addsuffix .$(LINT_EXT), $(addprefix $(LINT_OUTPUT_DIR)/, $(NONGEN_CXX_SRCS)))
    EMPTY_LINT_REPORT := $(BUILD_DIR)/.$(LINT_EXT)
    NONEMPTY_LINT_REPORT := $(BUILD_DIR)/$(LINT_EXT)
    # PY$(PROJECT)_SRC is the python wrapper for $(PROJECT)
    PY$(PROJECT)_SRC := python/$(PROJECT)/_$(PROJECT).cpp
    PY$(PROJECT)_SO := python/$(PROJECT)/_$(PROJECT).so
    PY$(PROJECT)_HXX := include/$(PROJECT)/layers/python_layer.hpp
    # MAT$(PROJECT)_SRC is the mex entrance point of matlab package for $(PROJECT)
    MAT$(PROJECT)_SRC := matlab/+$(PROJECT)/private/$(PROJECT)_.cpp
    ifneq ($(MATLAB_DIR),)
        MAT_SO_EXT := $(shell $(MATLAB_DIR)/bin/mexext)
    endif
    MAT$(PROJECT)_SO := matlab/+$(PROJECT)/private/$(PROJECT)_.$(MAT_SO_EXT)
    
    ##############################
    # Derive generated files
    ##############################
    # The generated files for protocol buffers
    PROTO_GEN_HEADER_SRCS := $(addprefix $(PROTO_BUILD_DIR)/, 
            $(notdir ${PROTO_SRCS:.proto=.pb.h}))
    PROTO_GEN_HEADER := $(addprefix $(PROTO_BUILD_INCLUDE_DIR)/, 
            $(notdir ${PROTO_SRCS:.proto=.pb.h}))
    PROTO_GEN_CC := $(addprefix $(BUILD_DIR)/, ${PROTO_SRCS:.proto=.pb.cc})
    PY_PROTO_BUILD_DIR := python/$(PROJECT)/proto
    PY_PROTO_INIT := python/$(PROJECT)/proto/__init__.py
    PROTO_GEN_PY := $(foreach file,${PROTO_SRCS:.proto=_pb2.py}, 
            $(PY_PROTO_BUILD_DIR)/$(notdir $(file)))
    # The objects corresponding to the source files
    # These objects will be linked into the final shared library, so we
    # exclude the tool, example, and test objects.
    CXX_OBJS := $(addprefix $(BUILD_DIR)/, ${CXX_SRCS:.cpp=.o})
    CU_OBJS := $(addprefix $(BUILD_DIR)/cuda/, ${CU_SRCS:.cu=.o})
    PROTO_OBJS := ${PROTO_GEN_CC:.cc=.o}
    OBJS := $(PROTO_OBJS) $(CXX_OBJS) $(CU_OBJS)
    # tool, example, and test objects
    TOOL_OBJS := $(addprefix $(BUILD_DIR)/, ${TOOL_SRCS:.cpp=.o})
    TOOL_BUILD_DIR := $(BUILD_DIR)/tools
    TEST_CXX_BUILD_DIR := $(BUILD_DIR)/src/$(PROJECT)/test
    TEST_CU_BUILD_DIR := $(BUILD_DIR)/cuda/src/$(PROJECT)/test
    TEST_CXX_OBJS := $(addprefix $(BUILD_DIR)/, ${TEST_SRCS:.cpp=.o})
    TEST_CU_OBJS := $(addprefix $(BUILD_DIR)/cuda/, ${TEST_CU_SRCS:.cu=.o})
    TEST_OBJS := $(TEST_CXX_OBJS) $(TEST_CU_OBJS)
    GTEST_OBJ := $(addprefix $(BUILD_DIR)/, ${GTEST_SRC:.cpp=.o})
    EXAMPLE_OBJS := $(addprefix $(BUILD_DIR)/, ${EXAMPLE_SRCS:.cpp=.o})
    # Output files for automatic dependency generation
    DEPS := ${CXX_OBJS:.o=.d} ${CU_OBJS:.o=.d} ${TEST_CXX_OBJS:.o=.d} 
        ${TEST_CU_OBJS:.o=.d} $(BUILD_DIR)/${MAT$(PROJECT)_SO:.$(MAT_SO_EXT)=.d}
    # tool, example, and test bins
    TOOL_BINS := ${TOOL_OBJS:.o=.bin}
    EXAMPLE_BINS := ${EXAMPLE_OBJS:.o=.bin}
    # symlinks to tool bins without the ".bin" extension
    TOOL_BIN_LINKS := ${TOOL_BINS:.bin=}
    # Put the test binaries in build/test for convenience.
    TEST_BIN_DIR := $(BUILD_DIR)/test
    TEST_CU_BINS := $(addsuffix .testbin,$(addprefix $(TEST_BIN_DIR)/, 
            $(foreach obj,$(TEST_CU_OBJS),$(basename $(notdir $(obj))))))
    TEST_CXX_BINS := $(addsuffix .testbin,$(addprefix $(TEST_BIN_DIR)/, 
            $(foreach obj,$(TEST_CXX_OBJS),$(basename $(notdir $(obj))))))
    TEST_BINS := $(TEST_CXX_BINS) $(TEST_CU_BINS)
    # TEST_ALL_BIN is the test binary that links caffe dynamically.
    TEST_ALL_BIN := $(TEST_BIN_DIR)/test_all.testbin
    
    ##############################
    # Derive compiler warning dump locations
    ##############################
    WARNS_EXT := warnings.txt
    CXX_WARNS := $(addprefix $(BUILD_DIR)/, ${CXX_SRCS:.cpp=.o.$(WARNS_EXT)})
    CU_WARNS := $(addprefix $(BUILD_DIR)/cuda/, ${CU_SRCS:.cu=.o.$(WARNS_EXT)})
    TOOL_WARNS := $(addprefix $(BUILD_DIR)/, ${TOOL_SRCS:.cpp=.o.$(WARNS_EXT)})
    EXAMPLE_WARNS := $(addprefix $(BUILD_DIR)/, ${EXAMPLE_SRCS:.cpp=.o.$(WARNS_EXT)})
    TEST_WARNS := $(addprefix $(BUILD_DIR)/, ${TEST_SRCS:.cpp=.o.$(WARNS_EXT)})
    TEST_CU_WARNS := $(addprefix $(BUILD_DIR)/cuda/, ${TEST_CU_SRCS:.cu=.o.$(WARNS_EXT)})
    ALL_CXX_WARNS := $(CXX_WARNS) $(TOOL_WARNS) $(EXAMPLE_WARNS) $(TEST_WARNS)
    ALL_CU_WARNS := $(CU_WARNS) $(TEST_CU_WARNS)
    ALL_WARNS := $(ALL_CXX_WARNS) $(ALL_CU_WARNS)
    
    EMPTY_WARN_REPORT := $(BUILD_DIR)/.$(WARNS_EXT)
    NONEMPTY_WARN_REPORT := $(BUILD_DIR)/$(WARNS_EXT)
    
    ##############################
    # Derive include and lib directories
    ##############################
    CUDA_INCLUDE_DIR := $(CUDA_DIR)/include
    
    CUDA_LIB_DIR :=
    # add <cuda>/lib64 only if it exists
    ifneq ("$(wildcard $(CUDA_DIR)/lib64)","")
        CUDA_LIB_DIR += $(CUDA_DIR)/lib64
    endif
    CUDA_LIB_DIR += $(CUDA_DIR)/lib
    
    INCLUDE_DIRS += $(BUILD_INCLUDE_DIR) ./src ./include
    ifneq ($(CPU_ONLY), 1)
        INCLUDE_DIRS += $(CUDA_INCLUDE_DIR)
        LIBRARY_DIRS += $(CUDA_LIB_DIR)
        LIBRARIES := cudart cublas curand
    endif
    
    LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial
    
    # handle IO dependencies
    USE_LEVELDB ?= 1
    USE_LMDB ?= 1
    # This code is taken from https://github.com/sh1r0/caffe-android-lib
    USE_HDF5 ?= 1
    USE_OPENCV ?= 1
    
    ifeq ($(USE_LEVELDB), 1)
        LIBRARIES += leveldb snappy
    endif
    ifeq ($(USE_LMDB), 1)
        LIBRARIES += lmdb
    endif
    # This code is taken from https://github.com/sh1r0/caffe-android-lib
    ifeq ($(USE_HDF5), 1)
        LIBRARIES += hdf5_hl hdf5
    endif
    ifeq ($(USE_OPENCV), 1)
        LIBRARIES += opencv_core opencv_highgui opencv_imgproc
    
        ifeq ($(OPENCV_VERSION), 3)
            LIBRARIES += opencv_imgcodecs
        endif
    
    endif
    PYTHON_LIBRARIES ?= boost_python python2.7
    WARNINGS := -Wall -Wno-sign-compare
    
    ##############################
    # Set build directories
    ##############################
    
    DISTRIBUTE_DIR ?= distribute
    DISTRIBUTE_SUBDIRS := $(DISTRIBUTE_DIR)/bin $(DISTRIBUTE_DIR)/lib
    DIST_ALIASES := dist
    ifneq ($(strip $(DISTRIBUTE_DIR)),distribute)
            DIST_ALIASES += distribute
    endif
    
    ALL_BUILD_DIRS := $(sort $(BUILD_DIR) $(addprefix $(BUILD_DIR)/, $(SRC_DIRS)) 
        $(addprefix $(BUILD_DIR)/cuda/, $(SRC_DIRS)) 
        $(LIB_BUILD_DIR) $(TEST_BIN_DIR) $(PY_PROTO_BUILD_DIR) $(LINT_OUTPUT_DIR) 
        $(DISTRIBUTE_SUBDIRS) $(PROTO_BUILD_INCLUDE_DIR))
    
    ##############################
    # Set directory for Doxygen-generated documentation
    ##############################
    DOXYGEN_CONFIG_FILE ?= ./.Doxyfile
    # should be the same as OUTPUT_DIRECTORY in the .Doxyfile
    DOXYGEN_OUTPUT_DIR ?= ./doxygen
    DOXYGEN_COMMAND ?= doxygen
    # All the files that might have Doxygen documentation.
    DOXYGEN_SOURCES := $(shell find 
        src/$(PROJECT) 
        include/$(PROJECT) 
        python/ 
        matlab/ 
        examples 
        tools 
        -name "*.cpp" -or -name "*.hpp" -or -name "*.cu" -or -name "*.cuh" -or 
            -name "*.py" -or -name "*.m")
    DOXYGEN_SOURCES += $(DOXYGEN_CONFIG_FILE)
    
    
    ##############################
    # Configure build
    ##############################
    
    # Determine platform
    UNAME := $(shell uname -s)
    ifeq ($(UNAME), Linux)
        LINUX := 1
    else ifeq ($(UNAME), Darwin)
        OSX := 1
        OSX_MAJOR_VERSION := $(shell sw_vers -productVersion | cut -f 1 -d .)
        OSX_MINOR_VERSION := $(shell sw_vers -productVersion | cut -f 2 -d .)
    endif
    
    # Linux
    ifeq ($(LINUX), 1)
        CXX ?= /usr/bin/g++
        GCCVERSION := $(shell $(CXX) -dumpversion | cut -f1,2 -d.)
        # older versions of gcc are too dumb to build boost with -Wuninitalized
        ifeq ($(shell echo | awk '{exit $(GCCVERSION) < 4.6;}'), 1)
            WARNINGS += -Wno-uninitialized
        endif
        # boost::thread is reasonably called boost_thread (compare OS X)
        # We will also explicitly add stdc++ to the link target.
        LIBRARIES += boost_thread stdc++
        VERSIONFLAGS += -Wl,-soname,$(DYNAMIC_VERSIONED_NAME_SHORT) -Wl,-rpath,$(ORIGIN)/../lib
    endif
    
    # OS X:
    # clang++ instead of g++
    # libstdc++ for NVCC compatibility on OS X >= 10.9 with CUDA < 7.0
    ifeq ($(OSX), 1)
        CXX := /usr/bin/clang++
        ifneq ($(CPU_ONLY), 1)
            CUDA_VERSION := $(shell $(CUDA_DIR)/bin/nvcc -V | grep -o 'release [0-9.]*' | tr -d '[a-z ]')
            ifeq ($(shell echo | awk '{exit $(CUDA_VERSION) < 7.0;}'), 1)
                CXXFLAGS += -stdlib=libstdc++
                LINKFLAGS += -stdlib=libstdc++
            endif
            # clang throws this warning for cuda headers
            WARNINGS += -Wno-unneeded-internal-declaration
            # 10.11 strips DYLD_* env vars so link CUDA (rpath is available on 10.5+)
            OSX_10_OR_LATER   := $(shell [ $(OSX_MAJOR_VERSION) -ge 10 ] && echo true)
            OSX_10_5_OR_LATER := $(shell [ $(OSX_MINOR_VERSION) -ge 5 ] && echo true)
            ifeq ($(OSX_10_OR_LATER),true)
                ifeq ($(OSX_10_5_OR_LATER),true)
                    LDFLAGS += -Wl,-rpath,$(CUDA_LIB_DIR)
                endif
            endif
        endif
        # gtest needs to use its own tuple to not conflict with clang
        COMMON_FLAGS += -DGTEST_USE_OWN_TR1_TUPLE=1
        # boost::thread is called boost_thread-mt to mark multithreading on OS X
        LIBRARIES += boost_thread-mt
        # we need to explicitly ask for the rpath to be obeyed
        ORIGIN := @loader_path
        VERSIONFLAGS += -Wl,-install_name,@rpath/$(DYNAMIC_VERSIONED_NAME_SHORT) -Wl,-rpath,$(ORIGIN)/../../build/lib
    else
        ORIGIN := $$ORIGIN
    endif
    
    # Custom compiler
    ifdef CUSTOM_CXX
        CXX := $(CUSTOM_CXX)
    endif
    
    # Static linking
    ifneq (,$(findstring clang++,$(CXX)))
        STATIC_LINK_COMMAND := -Wl,-force_load $(STATIC_NAME)
    else ifneq (,$(findstring g++,$(CXX)))
        STATIC_LINK_COMMAND := -Wl,--whole-archive $(STATIC_NAME) -Wl,--no-whole-archive
    else
      # The following line must not be indented with a tab, since we are not inside a target
      $(error Cannot static link with the $(CXX) compiler)
    endif
    
    # Debugging
    ifeq ($(DEBUG), 1)
        COMMON_FLAGS += -DDEBUG -g -O0
        NVCCFLAGS += -G
    else
        COMMON_FLAGS += -DNDEBUG -O2
    endif
    
    # cuDNN acceleration configuration.
    ifeq ($(USE_CUDNN), 1)
        LIBRARIES += cudnn
        COMMON_FLAGS += -DUSE_CUDNN
    endif
    
    # NCCL acceleration configuration
    ifeq ($(USE_NCCL), 1)
        LIBRARIES += nccl
        COMMON_FLAGS += -DUSE_NCCL
    endif
    
    # configure IO libraries
    ifeq ($(USE_OPENCV), 1)
        COMMON_FLAGS += -DUSE_OPENCV
    endif
    ifeq ($(USE_LEVELDB), 1)
        COMMON_FLAGS += -DUSE_LEVELDB
    endif
    ifeq ($(USE_LMDB), 1)
        COMMON_FLAGS += -DUSE_LMDB
    ifeq ($(ALLOW_LMDB_NOLOCK), 1)
        COMMON_FLAGS += -DALLOW_LMDB_NOLOCK
    endif
    endif
    # This code is taken from https://github.com/sh1r0/caffe-android-lib
    ifeq ($(USE_HDF5), 1)
        COMMON_FLAGS += -DUSE_HDF5
    endif
    
    # CPU-only configuration
    ifeq ($(CPU_ONLY), 1)
        OBJS := $(PROTO_OBJS) $(CXX_OBJS)
        TEST_OBJS := $(TEST_CXX_OBJS)
        TEST_BINS := $(TEST_CXX_BINS)
        ALL_WARNS := $(ALL_CXX_WARNS)
        TEST_FILTER := --gtest_filter="-*GPU*"
        COMMON_FLAGS += -DCPU_ONLY
    endif
    
    # Python layer support
    ifeq ($(WITH_PYTHON_LAYER), 1)
        COMMON_FLAGS += -DWITH_PYTHON_LAYER
        LIBRARIES += $(PYTHON_LIBRARIES)
    endif
    
    # BLAS configuration (default = ATLAS)
    BLAS ?= atlas
    ifeq ($(BLAS), mkl)
        # MKL
        LIBRARIES += mkl_rt
        COMMON_FLAGS += -DUSE_MKL
        MKLROOT ?= /opt/intel/mkl
        BLAS_INCLUDE ?= $(MKLROOT)/include
        BLAS_LIB ?= $(MKLROOT)/lib $(MKLROOT)/lib/intel64
    else ifeq ($(BLAS), open)
        # OpenBLAS
        LIBRARIES += openblas
    else
        # ATLAS
        ifeq ($(LINUX), 1)
            ifeq ($(BLAS), atlas)
                # Linux simply has cblas and atlas
                LIBRARIES += cblas atlas
            endif
        else ifeq ($(OSX), 1)
            # OS X packages atlas as the vecLib framework
            LIBRARIES += cblas
            # 10.10 has accelerate while 10.9 has veclib
            XCODE_CLT_VER := $(shell pkgutil --pkg-info=com.apple.pkg.CLTools_Executables | grep 'version' | sed 's/[^0-9]*([0-9]).*/1/')
            XCODE_CLT_GEQ_7 := $(shell [ $(XCODE_CLT_VER) -gt 6 ] && echo 1)
            XCODE_CLT_GEQ_6 := $(shell [ $(XCODE_CLT_VER) -gt 5 ] && echo 1)
            ifeq ($(XCODE_CLT_GEQ_7), 1)
                BLAS_INCLUDE ?= /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/$(shell ls /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/ | sort | tail -1)/System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/Headers
            else ifeq ($(XCODE_CLT_GEQ_6), 1)
                BLAS_INCLUDE ?= /System/Library/Frameworks/Accelerate.framework/Versions/Current/Frameworks/vecLib.framework/Headers/
                LDFLAGS += -framework Accelerate
            else
                BLAS_INCLUDE ?= /System/Library/Frameworks/vecLib.framework/Versions/Current/Headers/
                LDFLAGS += -framework vecLib
            endif
        endif
    endif
    INCLUDE_DIRS += $(BLAS_INCLUDE)
    LIBRARY_DIRS += $(BLAS_LIB)
    
    LIBRARY_DIRS += $(LIB_BUILD_DIR)
    
    # Automatic dependency generation (nvcc is handled separately)
    CXXFLAGS += -MMD -MP
    
    # Complete build flags.
    COMMON_FLAGS += $(foreach includedir,$(INCLUDE_DIRS),-I$(includedir))
    CXXFLAGS += -pthread -fPIC $(COMMON_FLAGS) $(WARNINGS)
    NVCCFLAGS += -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)
    # mex may invoke an older gcc that is too liberal with -Wuninitalized
    MATLAB_CXXFLAGS := $(CXXFLAGS) -Wno-uninitialized
    LINKFLAGS += -pthread -fPIC $(COMMON_FLAGS) $(WARNINGS)
    
    USE_PKG_CONFIG ?= 0
    ifeq ($(USE_PKG_CONFIG), 1)
        PKG_CONFIG := $(shell pkg-config opencv --libs)
    else
        PKG_CONFIG :=
    endif
    LDFLAGS += $(foreach librarydir,$(LIBRARY_DIRS),-L$(librarydir)) $(PKG_CONFIG) 
            $(foreach library,$(LIBRARIES),-l$(library))
    PYTHON_LDFLAGS := $(LDFLAGS) $(foreach library,$(PYTHON_LIBRARIES),-l$(library))
    
    # 'superclean' target recursively* deletes all files ending with an extension
    # in $(SUPERCLEAN_EXTS) below.  This may be useful if you've built older
    # versions of Caffe that do not place all generated files in a location known
    # to the 'clean' target.
    #
    # 'supercleanlist' will list the files to be deleted by make superclean.
    #
    # * Recursive with the exception that symbolic links are never followed, per the
    # default behavior of 'find'.
    SUPERCLEAN_EXTS := .so .a .o .bin .testbin .pb.cc .pb.h _pb2.py .cuo
    
    # Set the sub-targets of the 'everything' target.
    EVERYTHING_TARGETS := all py$(PROJECT) test warn lint
    # Only build matcaffe as part of "everything" if MATLAB_DIR is specified.
    ifneq ($(MATLAB_DIR),)
        EVERYTHING_TARGETS += mat$(PROJECT)
    endif
    
    ##############################
    # Define build targets
    ##############################
    .PHONY: all lib test clean docs linecount lint lintclean tools examples $(DIST_ALIASES) 
        py mat py$(PROJECT) mat$(PROJECT) proto runtest 
        superclean supercleanlist supercleanfiles warn everything
    
    all: lib tools examples
    
    lib: $(STATIC_NAME) $(DYNAMIC_NAME)
    
    everything: $(EVERYTHING_TARGETS)
    
    linecount:
        cloc --read-lang-def=$(PROJECT).cloc 
            src/$(PROJECT) include/$(PROJECT) tools examples 
            python matlab
    
    lint: $(EMPTY_LINT_REPORT)
    
    lintclean:
        @ $(RM) -r $(LINT_OUTPUT_DIR) $(EMPTY_LINT_REPORT) $(NONEMPTY_LINT_REPORT)
    
    docs: $(DOXYGEN_OUTPUT_DIR)
        @ cd ./docs ; ln -sfn ../$(DOXYGEN_OUTPUT_DIR)/html doxygen
    
    $(DOXYGEN_OUTPUT_DIR): $(DOXYGEN_CONFIG_FILE) $(DOXYGEN_SOURCES)
        $(DOXYGEN_COMMAND) $(DOXYGEN_CONFIG_FILE)
    
    $(EMPTY_LINT_REPORT): $(LINT_OUTPUTS) | $(BUILD_DIR)
        @ cat $(LINT_OUTPUTS) > $@
        @ if [ -s "$@" ]; then 
            cat $@; 
            mv $@ $(NONEMPTY_LINT_REPORT); 
            echo "Found one or more lint errors."; 
            exit 1; 
          fi; 
          $(RM) $(NONEMPTY_LINT_REPORT); 
          echo "No lint errors!";
    
    $(LINT_OUTPUTS): $(LINT_OUTPUT_DIR)/%.lint.txt : % $(LINT_SCRIPT) | $(LINT_OUTPUT_DIR)
        @ mkdir -p $(dir $@)
        @ python $(LINT_SCRIPT) $< 2>&1 
            | grep -v "^Done processing " 
            | grep -v "^Total errors found: 0" 
            > $@ 
            || true
    
    test: $(TEST_ALL_BIN) $(TEST_ALL_DYNLINK_BIN) $(TEST_BINS)
    
    tools: $(TOOL_BINS) $(TOOL_BIN_LINKS)
    
    examples: $(EXAMPLE_BINS)
    
    py$(PROJECT): py
    
    py: $(PY$(PROJECT)_SO) $(PROTO_GEN_PY)
    
    $(PY$(PROJECT)_SO): $(PY$(PROJECT)_SRC) $(PY$(PROJECT)_HXX) | $(DYNAMIC_NAME)
        @ echo CXX/LD -o $@ $<
        $(Q)$(CXX) -shared -o $@ $(PY$(PROJECT)_SRC) 
            -o $@ $(LINKFLAGS) -l$(LIBRARY_NAME) $(PYTHON_LDFLAGS) 
            -Wl,-rpath,$(ORIGIN)/../../build/lib
    
    mat$(PROJECT): mat
    
    mat: $(MAT$(PROJECT)_SO)
    
    $(MAT$(PROJECT)_SO): $(MAT$(PROJECT)_SRC) $(STATIC_NAME)
        @ if [ -z "$(MATLAB_DIR)" ]; then 
            echo "MATLAB_DIR must be specified in $(CONFIG_FILE)" 
                "to build mat$(PROJECT)."; 
            exit 1; 
        fi
        @ echo MEX $<
        $(Q)$(MATLAB_DIR)/bin/mex $(MAT$(PROJECT)_SRC) 
                CXX="$(CXX)" 
                CXXFLAGS="$$CXXFLAGS $(MATLAB_CXXFLAGS)" 
                CXXLIBS="$$CXXLIBS $(STATIC_LINK_COMMAND) $(LDFLAGS)" -output $@
        @ if [ -f "$(PROJECT)_.d" ]; then 
            mv -f $(PROJECT)_.d $(BUILD_DIR)/${MAT$(PROJECT)_SO:.$(MAT_SO_EXT)=.d}; 
        fi
    
    runtest: $(TEST_ALL_BIN)
        $(TOOL_BUILD_DIR)/caffe
        $(TEST_ALL_BIN) $(TEST_GPUID) --gtest_shuffle $(TEST_FILTER)
    
    pytest: py
        cd python; python -m unittest discover -s caffe/test
    
    mattest: mat
        cd matlab; $(MATLAB_DIR)/bin/matlab -nodisplay -r 'caffe.run_tests(), exit()'
    
    warn: $(EMPTY_WARN_REPORT)
    
    $(EMPTY_WARN_REPORT): $(ALL_WARNS) | $(BUILD_DIR)
        @ cat $(ALL_WARNS) > $@
        @ if [ -s "$@" ]; then 
            cat $@; 
            mv $@ $(NONEMPTY_WARN_REPORT); 
            echo "Compiler produced one or more warnings."; 
            exit 1; 
          fi; 
          $(RM) $(NONEMPTY_WARN_REPORT); 
          echo "No compiler warnings!";
    
    $(ALL_WARNS): %.o.$(WARNS_EXT) : %.o
    
    $(BUILD_DIR_LINK): $(BUILD_DIR)/.linked
    
    # Create a target ".linked" in this BUILD_DIR to tell Make that the "build" link
    # is currently correct, then delete the one in the OTHER_BUILD_DIR in case it
    # exists and $(DEBUG) is toggled later.
    $(BUILD_DIR)/.linked:
        @ mkdir -p $(BUILD_DIR)
        @ $(RM) $(OTHER_BUILD_DIR)/.linked
        @ $(RM) -r $(BUILD_DIR_LINK)
        @ ln -s $(BUILD_DIR) $(BUILD_DIR_LINK)
        @ touch $@
    
    $(ALL_BUILD_DIRS): | $(BUILD_DIR_LINK)
        @ mkdir -p $@
    
    $(DYNAMIC_NAME): $(OBJS) | $(LIB_BUILD_DIR)
        @ echo LD -o $@
        $(Q)$(CXX) -shared -o $@ $(OBJS) $(VERSIONFLAGS) $(LINKFLAGS) $(LDFLAGS)
        @ cd $(BUILD_DIR)/lib; rm -f $(DYNAMIC_NAME_SHORT);   ln -s $(DYNAMIC_VERSIONED_NAME_SHORT) $(DYNAMIC_NAME_SHORT)
    
    $(STATIC_NAME): $(OBJS) | $(LIB_BUILD_DIR)
        @ echo AR -o $@
        $(Q)ar rcs $@ $(OBJS)
    
    $(BUILD_DIR)/%.o: %.cpp $(PROTO_GEN_HEADER) | $(ALL_BUILD_DIRS)
        @ echo CXX $<
        $(Q)$(CXX) $< $(CXXFLAGS) -c -o $@ 2> $@.$(WARNS_EXT) 
            || (cat $@.$(WARNS_EXT); exit 1)
        @ cat $@.$(WARNS_EXT)
    
    $(PROTO_BUILD_DIR)/%.pb.o: $(PROTO_BUILD_DIR)/%.pb.cc $(PROTO_GEN_HEADER) 
            | $(PROTO_BUILD_DIR)
        @ echo CXX $<
        $(Q)$(CXX) $< $(CXXFLAGS) -c -o $@ 2> $@.$(WARNS_EXT) 
            || (cat $@.$(WARNS_EXT); exit 1)
        @ cat $@.$(WARNS_EXT)
    
    $(BUILD_DIR)/cuda/%.o: %.cu | $(ALL_BUILD_DIRS)
        @ echo NVCC $<
        $(Q)$(CUDA_DIR)/bin/nvcc $(NVCCFLAGS) $(CUDA_ARCH) -M $< -o ${@:.o=.d} 
            -odir $(@D)
        $(Q)$(CUDA_DIR)/bin/nvcc $(NVCCFLAGS) $(CUDA_ARCH) -c $< -o $@ 2> $@.$(WARNS_EXT) 
            || (cat $@.$(WARNS_EXT); exit 1)
        @ cat $@.$(WARNS_EXT)
    
    $(TEST_ALL_BIN): $(TEST_MAIN_SRC) $(TEST_OBJS) $(GTEST_OBJ) 
            | $(DYNAMIC_NAME) $(TEST_BIN_DIR)
        @ echo CXX/LD -o $@ $<
        $(Q)$(CXX) $(TEST_MAIN_SRC) $(TEST_OBJS) $(GTEST_OBJ) 
            -o $@ $(LINKFLAGS) $(LDFLAGS) -l$(LIBRARY_NAME) -Wl,-rpath,$(ORIGIN)/../lib
    
    $(TEST_CU_BINS): $(TEST_BIN_DIR)/%.testbin: $(TEST_CU_BUILD_DIR)/%.o 
        $(GTEST_OBJ) | $(DYNAMIC_NAME) $(TEST_BIN_DIR)
        @ echo LD $<
        $(Q)$(CXX) $(TEST_MAIN_SRC) $< $(GTEST_OBJ) 
            -o $@ $(LINKFLAGS) $(LDFLAGS) -l$(LIBRARY_NAME) -Wl,-rpath,$(ORIGIN)/../lib
    
    $(TEST_CXX_BINS): $(TEST_BIN_DIR)/%.testbin: $(TEST_CXX_BUILD_DIR)/%.o 
        $(GTEST_OBJ) | $(DYNAMIC_NAME) $(TEST_BIN_DIR)
        @ echo LD $<
        $(Q)$(CXX) $(TEST_MAIN_SRC) $< $(GTEST_OBJ) 
            -o $@ $(LINKFLAGS) $(LDFLAGS) -l$(LIBRARY_NAME) -Wl,-rpath,$(ORIGIN)/../lib
    
    # Target for extension-less symlinks to tool binaries with extension '*.bin'.
    $(TOOL_BUILD_DIR)/%: $(TOOL_BUILD_DIR)/%.bin | $(TOOL_BUILD_DIR)
        @ $(RM) $@
        @ ln -s $(notdir $<) $@
    
    $(TOOL_BINS): %.bin : %.o | $(DYNAMIC_NAME)
        @ echo CXX/LD -o $@
        $(Q)$(CXX) $< -o $@ $(LINKFLAGS) -l$(LIBRARY_NAME) $(LDFLAGS) 
            -Wl,-rpath,$(ORIGIN)/../lib
    
    $(EXAMPLE_BINS): %.bin : %.o | $(DYNAMIC_NAME)
        @ echo CXX/LD -o $@
        $(Q)$(CXX) $< -o $@ $(LINKFLAGS) -l$(LIBRARY_NAME) $(LDFLAGS) 
            -Wl,-rpath,$(ORIGIN)/../../lib
    
    proto: $(PROTO_GEN_CC) $(PROTO_GEN_HEADER)
    
    $(PROTO_BUILD_DIR)/%.pb.cc $(PROTO_BUILD_DIR)/%.pb.h : 
            $(PROTO_SRC_DIR)/%.proto | $(PROTO_BUILD_DIR)
        @ echo PROTOC $<
        $(Q)protoc --proto_path=$(PROTO_SRC_DIR) --cpp_out=$(PROTO_BUILD_DIR) $<
    
    $(PY_PROTO_BUILD_DIR)/%_pb2.py : $(PROTO_SRC_DIR)/%.proto 
            $(PY_PROTO_INIT) | $(PY_PROTO_BUILD_DIR)
        @ echo PROTOC (python) $<
        $(Q)protoc --proto_path=src --python_out=python $<
    
    $(PY_PROTO_INIT): | $(PY_PROTO_BUILD_DIR)
        touch $(PY_PROTO_INIT)
    
    clean:
        @- $(RM) -rf $(ALL_BUILD_DIRS)
        @- $(RM) -rf $(OTHER_BUILD_DIR)
        @- $(RM) -rf $(BUILD_DIR_LINK)
        @- $(RM) -rf $(DISTRIBUTE_DIR)
        @- $(RM) $(PY$(PROJECT)_SO)
        @- $(RM) $(MAT$(PROJECT)_SO)
    
    supercleanfiles:
        $(eval SUPERCLEAN_FILES := $(strip 
                $(foreach ext,$(SUPERCLEAN_EXTS), $(shell find . -name '*$(ext)' 
                -not -path './data/*'))))
    
    supercleanlist: supercleanfiles
        @ 
        if [ -z "$(SUPERCLEAN_FILES)" ]; then 
            echo "No generated files found."; 
        else 
            echo $(SUPERCLEAN_FILES) | tr ' ' '
    '; 
        fi
    
    superclean: clean supercleanfiles
        @ 
        if [ -z "$(SUPERCLEAN_FILES)" ]; then 
            echo "No generated files found."; 
        else 
            echo "Deleting the following generated files:"; 
            echo $(SUPERCLEAN_FILES) | tr ' ' '
    '; 
            $(RM) $(SUPERCLEAN_FILES); 
        fi
    
    $(DIST_ALIASES): $(DISTRIBUTE_DIR)
    
    $(DISTRIBUTE_DIR): all py | $(DISTRIBUTE_SUBDIRS)
        # add proto
        cp -r src/caffe/proto $(DISTRIBUTE_DIR)/
        # add include
        cp -r include $(DISTRIBUTE_DIR)/
        mkdir -p $(DISTRIBUTE_DIR)/include/caffe/proto
        cp $(PROTO_GEN_HEADER_SRCS) $(DISTRIBUTE_DIR)/include/caffe/proto
        # add tool and example binaries
        cp $(TOOL_BINS) $(DISTRIBUTE_DIR)/bin
        cp $(EXAMPLE_BINS) $(DISTRIBUTE_DIR)/bin
        # add libraries
        cp $(STATIC_NAME) $(DISTRIBUTE_DIR)/lib
        install -m 644 $(DYNAMIC_NAME) $(DISTRIBUTE_DIR)/lib
        cd $(DISTRIBUTE_DIR)/lib; rm -f $(DYNAMIC_NAME_SHORT);   ln -s $(DYNAMIC_VERSIONED_NAME_SHORT) $(DYNAMIC_NAME_SHORT)
        # add python - it's not the standard way, indeed...
        cp -r python $(DISTRIBUTE_DIR)/
    
    -include $(DEPS)

    安装caffe

    $ make
    $ make distribute

    4. 运行节点

    roslaunch lidar_apollo_cnn_seg_detect lidar_apollo_cnn_seg_detect.launch network_definition_file:=/PATH/TO/FILE.prototxt pretrained_model_file:=/PATH/TO/WEIGHTS.caffemodel points_src:=/points_raw

    需要从apollo的git上下载两个文件(https://github.com/ApolloAuto/apollo/tree/master/modules/perception/production/data/perception/lidar/models/cnnseg),分别为:deploy.prototxt及deploy.caffemodel。找到文件后填写修改上面文件的路径,可以运行。注意输入默认的电云topic为:/points_raw。

    运行时可能会出现一些错误(如下),改正后即可运行。 

    5. 错误修改

    这里会对opencv的几个错误,需要改一些文件

    错误1:

    CMake Error at /opt/ros/melodic/share/image_geometry/cmake/image_geometryConfig.cmake:113 (message):

    CMake Error at /opt/ros/melodic/share/grid_map_cv/cmake/grid_map_cvConfig.cmake:113 (message):

    这对这类错误,可以修改相应的Config.cmake的113行的相关文件

    if(NOT "include;/usr/include;/usr/include/opencv " STREQUAL " ")
      set(grid_map_cv_INCLUDE_DIRS "")
      set(_include_dirs "include;/usr/include;/usr/include/opencv")

    去/usr/include/去找opencv,发现找不到,而opencv文件夹在/usr/local/include/中,所以修改为:

    if(NOT "include;/usr/include;/usr/local/include/opencv " STREQUAL " ")
      set(grid_map_cv_INCLUDE_DIRS "")
      set(_include_dirs "include;/usr/include;/usr/local/include;/usr/local/include/opencv")

    错误2:

    calibration_publisher.cpp:(.text.startup+0xb8e): undefined reference to `cv::read(cv::FileNode const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)'

    需要修改calibration_publisher.cpp

    static cv::Mat CameraExtrinsicMat;
    static cv::Mat CameraMat;
    static cv::Mat DistCoeff;
    static cv::Size ImageSize;
    static std::string DistModel;
    static cv::String DistModel_cv;  // add code

    修改215行代码

    fs["CameraExtrinsicMat"] >> CameraExtrinsicMat;
    fs["CameraMat"] >> CameraMat;
    fs["DistCoeff"] >> DistCoeff;
    fs["ImageSize"] >> ImageSize;
    // fs["DistModel"] >> DistModel;   // block code
    fs["DistModel"] >> DistModel_cv;  // add code
    DistModel = DistModel_cv.operator std::string();  // add code

    错误3:

    在运行

     roslaunch lidar_apollo_cnn_seg_detect lidar_apollo_cnn_seg_detect.launch network_definition_file:=/home/leon/autoware.ai/C16_MODEL/deploy.prototxt pretrained_model_file:=/home/leon/autoware.ai/C16_MODEL/deploy.caffemodel points_src:=/points_raw

    命令时如果提示:

    /home/leon/autoware.ai/install/lidar_apollo_cnn_seg_detect/lib/lidar_apollo_cnn_seg_detect/lidar_apollo_cnn_seg_detect: error while loading shared libraries: libcaffe.so.1.0.0: cannot open shared object file: No such file or directory

    需要在.bashrc中添加:

    # caffe
    export LD_LIBRARY_PATH=/home/usr_name/caffe/.build_release/lib:$LD_LIBRARY_PATH

     错误4(重点错误):

    在运行roslaunch时,会出现错误:

     Check failed: bottom[0]->shape(channel_axis_) == channels_ (8 vs. 6) Input size incompatible with convolution kernel.

    需要修改代码:

    (1)修改autoware.ai/src/autoware/core_perception/lidar_apollo_cnn_seg_detect/include/cnn_segmentation.h文件

    double range_, score_threshold_;
    int width_;
    int height_;
    bool use_constant_feature_;  // add code
    std_msgs::Header message_header_;
    std::string topic_src_;

    (2)修改autoware.ai/src/autoware/core_perception/lidar_apollo_cnn_seg_detect/include/feature_generator.h:

    FeatureGenerator(){}
    ~FeatureGenerator(){}
    
    // bool init(caffe::Blob<float>* out_blob);  // block code
    bool init(caffe::Blob<float>* out_blob, bool use_constant_feature);  // add code

    (3)修改autoware.ai/src/autoware/core_perception/lidar_apollo_cnn_seg_detect/launch/lidar_apollo_cnn_seg_detect.launch

    <!-- -->
    <launch>
      <arg name="network_definition_file" />
      <arg name="pretrained_model_file" />
      <arg name="points_src" default="/points_raw" />
      <arg name="score_threshold" default="0.6" />
      <arg name="use_gpu" default="true" />
      <arg name="gpu_device_id" default="0" />
    
      <arg name="width" default="512" />   <!-- add code -->
      <arg name="height" default="512" />  <!-- add code -->
      <arg name="range" default="60" />  <!-- add code -->
      <arg name="use_constant_feature" default="false"/>  <!-- add code -->
    
      <node pkg="lidar_apollo_cnn_seg_detect" type="lidar_apollo_cnn_seg_detect" name="lidar_apollo_cnn_seg_detect_01" output="screen">
        <param name="network_definition_file" value="$(arg network_definition_file)" />
        <param name="pretrained_model_file" value="$(arg pretrained_model_file)" />
        <param name="points_src" value="$(arg points_src)" />
        <param name="score_threshold" value="$(arg score_threshold)" />
        <param name="use_gpu" value="$(arg use_gpu)" />
        <param name="gpu_device_id" value="$(arg gpu_device_id)" />
    
        <param name="height" value="$(arg height)" />  <!-- add code -->
        <param name="width" value="$(arg width)" />  <!-- add code -->
        <param name="range" value="$(arg range)" />  <!-- add code -->
        <param name="use_constant_feature" value="$(arg use_constant_feature)" />  <!-- add code -->
      </node>
    
      <node pkg="detected_objects_visualizer" type="visualize_detected_objects" name="cluster_detect_visualization_01"
              output="screen" ns="/detection/lidar_detector" />
    
    </launch>

    (4)修改autoware.ai/src/autoware/core_perception/lidar_apollo_cnn_seg_detect/nodes/cnn_segmentation.cpp

    private_node_handle.param<double>("range", range_, 60.);
    ROS_INFO("[%s] range: %.2f", __APP_NAME__, range_); // add code
    // ROS_INFO("[%s] Pretrained Model File: %.2f", __APP_NAME__, range_); //block code
    private_node_handle.param<int>("height", height_, 512);
    ROS_INFO("[%s] height: %d", __APP_NAME__, height_);
    
    private_node_handle.param<bool>("use_constant_feature", use_constant_feature_, false); // add code
    ROS_INFO("[%s] whether to use constant features: %d", __APP_NAME__, use_constant_feature_); // add code
    feature_generator_.reset(new FeatureGenerator());
    // if (!feature_generator_->init(feature_blob_.get()))  // block code 
    if (!feature_generator_->init(feature_blob_.get(), use_constant_feature_))  // add code
    {
      ROS_ERROR("[%s] Fail to Initialize feature generator for CNNSegmentation", __APP_NAME__);
      return false;
    }
    void CNNSegmentation::run()
    {
      // init(); // block code 
    
      if(this->init()){  // add code
        ROS_INFO("The network init successfully!");  // add code
      }else{  // add code
        ROS_ERROR("The network init fail!!!");  // add code
      }  // add code
    
      points_sub_ = nh_.subscribe(topic_src_, 1, &CNNSegmentation::pointsCallback, this);
      points_pub_ = nh_.advertise<sensor_msgs::PointCloud2>("/detection/lidar_detector/points_cluster", 1);
      objects_pub_ = nh_.advertise<autoware_msgs::DetectedObjectArray>("/detection/lidar_detector/objects", 1);
    
      ROS_INFO("[%s] Ready. Waiting for data...", __APP_NAME__);
    }

    修改

    // bool FeatureGenerator::init(caffe::Blob<float>* out_blob)  // block code
    bool FeatureGenerator::init(caffe::Blob<float>* out_blob, bool use_constant_feature) // add code
    {
      out_blob_ = out_blob;
    
      // raw feature parameters
      range_ = 60;
      width_ = 512;
      height_ = 512;
      min_height_ = -5.0;
      max_height_ = 5.0;
      CHECK_EQ(width_, height_)
          << "Current implementation version requires input_width == input_height.";
    
      // set output blob and log lookup table
      // out_blob_->Reshape(1, 8, height_, width_);  // clock code
    /********* add code *********/
    if(use_constant_feature){ // add code out_blob_->Reshape(1, 8, height_, width_); }else{ out_blob_->Reshape(1, 6, height_, width_); }
    /********* add code *********/
    log_table_.resize(
    256); for (size_t i = 0; i < log_table_.size(); ++i) { log_table_[i] = std::log1p(static_cast<float>(i)); } float* out_blob_data = nullptr; out_blob_data = out_blob_->mutable_cpu_data(); // the pretrained model inside apollo project don't use the constant feature like direction_data_ and distance_data_ // add explaination int channel_index = 0; max_height_data_ = out_blob_data + out_blob_->offset(0, channel_index++); mean_height_data_ = out_blob_data + out_blob_->offset(0, channel_index++); count_data_ = out_blob_data + out_blob_->offset(0, channel_index++); // direction_data_ = out_blob_data + out_blob_->offset(0, channel_index++); // block data  
    /*********** add code ***********/
    if(use_constant_feature){ direction_data_ = out_blob_data + out_blob_->offset(0, channel_index++); } /********** add code ************/
    top_intensity_data_
    = out_blob_data + out_blob_->offset(0, channel_index++); mean_intensity_data_ = out_blob_data + out_blob_->offset(0, channel_index++); // distance_data_ = out_blob_data + out_blob_->offset(0, channel_index++); // block data
    /********** add code ************/
    if(use_constant_feature){ distance_data_ = out_blob_data + out_blob_->offset(0, channel_index++); }
    /********** add code ************/ nonempty_data_
    = out_blob_data + out_blob_->offset(0, channel_index++); CHECK_EQ(out_blob_->offset(0, channel_index), out_blob_->count());
    /***********block code **********/
    // // compute direction and distance features // int siz = height_ * width_; // std::vector<float> direction_data(siz); // std::vector<float> distance_data(siz); // for (int row = 0; row < height_; ++row) { // for (int col = 0; col < width_; ++col) { // int idx = row * width_ + col; // // * row <-> x, column <-> y // float center_x = Pixel2Pc(row, height_, range_); // float center_y = Pixel2Pc(col, width_, range_); // constexpr double K_CV_PI = 3.1415926535897932384626433832795; // direction_data[idx] = // static_cast<float>(std::atan2(center_y, center_x) / (2.0 * K_CV_PI)); // distance_data[idx] = // static_cast<float>(std::hypot(center_x, center_y) / 60.0 - 0.5); // } // } // caffe::caffe_copy(siz, direction_data.data(), direction_data_); // caffe::caffe_copy(siz, distance_data.data(), distance_data_);
    /************** block code ******************/
    /************** add code **************/ if(use_constant_feature){ // compute direction and distance features int siz = height_ * width_; std::vector<float> direction_data(siz); std::vector<float> distance_data(siz); for (int row = 0; row < height_; ++row) { for (int col = 0; col < width_; ++col) { int idx = row * width_ + col; // * row <-> x, column <-> y float center_x = Pixel2Pc(row, height_, range_); float center_y = Pixel2Pc(col, width_, range_); constexpr double K_CV_PI = 3.1415926535897932384626433832795; direction_data[idx] = static_cast<float>(std::atan2(center_y, center_x) / (2.0 * K_CV_PI)); distance_data[idx] = static_cast<float>(std::hypot(center_x, center_y) / 60.0 - 0.5); } } caffe::caffe_copy(siz, direction_data.data(), direction_data_); caffe::caffe_copy(siz, distance_data.data(), distance_data_); } /****************** add code ******************/
    return true; }

    原创博文,转载请标明出处。

  • 相关阅读:
    把数据库转化成数据库脚本
    营养瘦身第一菜——金陵素什锦 健康程序员,至尚生活!
    十类好吃不胖的食物 健康程序员,至尚生活!
    一周带饭实录(附作菜菜谱) 健康程序员,至尚生活!
    日常五大习惯有助减肥 健康程序员,至尚生活!
    【暴强】200种好口碑便宜护肤品 健康程序员,至尚生活!
    腹式肠道操 缩胃瘦身有奇效 健康程序员,至尚生活!
    一天4时段喝水轻松瘦身 健康程序员,至尚生活!
    10种不要钱的护肤法则 健康程序员,至尚生活!
    看了这篇你肯定瘦 全身上下想瘦哪就瘦哪 健康程序员,至尚生活!
  • 原文地址:https://www.cnblogs.com/hgl0417/p/12114955.html
Copyright © 2020-2023  润新知