• 37_高并发场景下的缓存+数据库双写不一致问题分析与解决方案设计



    马上开始去开发业务系统

    从哪一步开始做,从比较简单的那一块开始做,实时性要求比较高的那块数据的缓存去做

    实时性比较高的数据缓存,选择的就是库存的服务

    库存可能会修改,每次修改都要去更新这个缓存数据; 每次库存的数据,在缓存中一旦过期,或者是被清理掉了,前端的nginx服务都会发送请求给库存服务,去获取相应的数据

    库存这一块,写数据库的时候,直接更新redis缓存

    实际上没有这么的简单,这里,其实就涉及到了一个问题,数据库与缓存双写,数据不一致的问题

    围绕和结合实时性较高的库存服务,把数据库与缓存双写不一致问题以及其解决方案,给大家讲解一下

    数据库与缓存双写不一致,很常见的问题,大型的缓存架构中,第一个解决方案

    大型的缓存架构全部讲解完了以后,整套架构是非常复杂,架构可以应对各种各样奇葩和极端的情况

    也有一种可能,不是说,来讲课的就是超人,万能的

    讲课,就跟写书一样,很可能会写错,也可能有些方案里的一些地方,我没考虑到

    也可能说,有些方案只是适合某些场景,在某些场景下,可能需要你进行方案的优化和调整才能适用于你自己的项目

    大家觉得对这些方案有什么疑问或者见解,都可以找我,沟通一下

    如果的确我觉得是我讲解的不对,或者有些地方考虑不周,那么我可以在视频里补录,更新到网站上面去

    多多包涵


    1、最初级的缓存不一致问题以及解决方案

    问题:先修改数据库,再删除缓存,如果删除缓存失败了,那么会导致数据库中是新数据,缓存中是旧数据,数据出现不一致

    解决思路

    先删除缓存,再修改数据库,如果删除缓存成功了,如果修改数据库失败了,那么数据库中是旧数据,缓存中是空的,那么数据不会不一致

    因为读的时候缓存没有,则读数据库中旧数据,然后更新到缓存中

    2、比较复杂的数据不一致问题分析

    数据发生了变更,先删除了缓存,然后要去修改数据库,此时还没修改

    一个请求过来,去读缓存,发现缓存空了,去查询数据库,查到了修改前的旧数据,放到了缓存中

    数据变更的程序完成了数据库的修改

    完了,数据库和缓存中的数据不一样了。。。。

    3、为什么上亿流量高并发场景下,缓存会出现这个问题?

    只有在对一个数据在并发的进行读写的时候,才可能会出现这种问题

    其实如果说你的并发量很低的话,特别是读并发很低,每天访问量就1万次,那么很少的情况下,会出现刚才描述的那种不一致的场景

    但是问题是,如果每天的是上亿的流量,每秒并发读是几万,每秒只要有数据更新的请求,就可能会出现上述的数据库+缓存不一致的情况

    高并发了以后,问题是很多的

    4、数据库与缓存更新与读取操作进行异步串行化

    更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个jvm内部的队列中

    读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据+更新缓存的操作,根据唯一标识路由之后,也发送同一个jvm内部的队列中

    一个队列对应一个工作线程

    每个工作线程串行拿到对应的操作,然后一条一条的执行

    这样的话,一个数据变更的操作,先执行,删除缓存,然后再去更新数据库,但是还没完成更新

    此时如果一个读请求过来,读到了空的缓存,那么可以先将缓存更新的请求发送到队列中,此时会在队列中积压,然后同步等待缓存更新完成

    这里有一个优化点,一个队列中,其实多个更新缓存请求串在一起是没意义的,因此可以做过滤,如果发现队列中已经有一个更新缓存的请求了,那么就不用再放个更新请求操作进去了,直接等待前面的更新操作请求完成即可

    待那个队列对应的工作线程完成了上一个操作的数据库的修改之后,才会去执行下一个操作,也就是缓存更新的操作,此时会从数据库中读取最新的值,然后写入缓存中

    如果请求还在等待时间范围内,不断轮询发现可以取到值了,那么就直接返回; 如果请求等待的时间超过一定时长,那么这一次直接从数据库中读取当前的旧值

    5、高并发的场景下,该解决方案要注意的问题

    (1)读请求长时阻塞

    由于读请求进行了非常轻度的异步化,所以一定要注意读超时的问题,每个读请求必须在超时时间范围内返回

    该解决方案,最大的风险点在于说,可能数据更新很频繁,导致队列中积压了大量更新操作在里面,然后读请求会发生大量的超时,最后导致大量的请求直接走数据库

    务必通过一些模拟真实的测试,看看更新数据的频繁是怎样的

    另外一点,因为一个队列中,可能会积压针对多个数据项的更新操作,因此需要根据自己的业务情况进行测试,可能需要部署多个服务,每个服务分摊一些数据的更新操作

    如果一个内存队列里居然会挤压100个商品的库存修改操作,每隔库存修改操作要耗费10ms区完成,那么最后一个商品的读请求,可能等待10 * 100 = 1000ms = 1s后,才能得到数据

    这个时候就导致读请求的长时阻塞

    一定要做根据实际业务系统的运行情况,去进行一些压力测试,和模拟线上环境,去看看最繁忙的时候,内存队列可能会挤压多少更新操作,可能会导致最后一个更新操作对应的读请求,会hang多少时间,如果读请求在200ms返回,如果你计算过后,哪怕是最繁忙的时候,积压10个更新操作,最多等待200ms,那还可以的

    如果一个内存队列可能积压的更新操作特别多,那么你就要加机器,让每个机器上部署的服务实例处理更少的数据,那么每个内存队列中积压的更新操作就会越少

    其实根据之前的项目经验,一般来说数据的写频率是很低的,因此实际上正常来说,在队列中积压的更新操作应该是很少的

    针对读高并发,读缓存架构的项目,一般写请求相对读来说,是非常非常少的,每秒的QPS能到几百就不错了

    一秒,500的写操作,5份,每200ms,就100个写操作

    单机器,20个内存队列,每个内存队列,可能就积压5个写操作,每个写操作性能测试后,一般在20ms左右就完成

    那么针对每个内存队列中的数据的读请求,也就最多hang一会儿,200ms以内肯定能返回了

    写QPS扩大10倍,但是经过刚才的测算,就知道,单机支撑写QPS几百没问题,那么就扩容机器,扩容10倍的机器,10台机器,每个机器20个队列,200个队列

    大部分的情况下,应该是这样的,大量的读请求过来,都是直接走缓存取到数据的

    少量情况下,可能遇到读跟数据更新冲突的情况,如上所述,那么此时更新操作如果先入队列,之后可能会瞬间来了对这个数据大量的读请求,但是因为做了去重的优化,所以也就一个更新缓存的操作跟在它后面

    等数据更新完了,读请求触发的缓存更新操作也完成,然后临时等待的读请求全部可以读到缓存中的数据

    (2)读请求并发量过高

    这里还必须做好压力测试,确保恰巧碰上上述情况的时候,还有一个风险,就是突然间大量读请求会在几十毫秒的延时hang在服务上,看服务能不能抗的住,需要多少机器才能抗住最大的极限情况的峰值

    但是因为并不是所有的数据都在同一时间更新,缓存也不会同一时间失效,所以每次可能也就是少数数据的缓存失效了,然后那些数据对应的读请求过来,并发量应该也不会特别大

    按1:99的比例计算读和写的请求,每秒5万的读QPS,可能只有500次更新操作

    如果一秒有500的写QPS,那么要测算好,可能写操作影响的数据有500条,这500条数据在缓存中失效后,可能导致多少读请求,发送读请求到库存服务来,要求更新缓存

    一般来说,1:1,1:2,1:3,每秒钟有1000个读请求,会hang在库存服务上,每个读请求最多hang多少时间,200ms就会返回

    在同一时间最多hang住的可能也就是单机200个读请求,同时hang住

    单机hang200个读请求,还是ok的

    1:20,每秒更新500条数据,这500秒数据对应的读请求,会有20 * 500 = 1万

    1万个读请求全部hang在库存服务上,就死定了

    (3)多服务实例部署的请求路由

    可能这个服务部署了多个实例,那么必须保证说,执行数据更新操作,以及执行缓存更新操作的请求,都通过nginx服务器路由到相同的服务实例上

    (4)热点商品的路由问题,导致请求的倾斜

    万一某个商品的读写请求特别高,全部打到相同的机器的相同的队列里面去了,可能造成某台机器的压力过大

    就是说,因为只有在商品数据更新的时候才会清空缓存,然后才会导致读写并发,所以更新频率不是太高的话,这个问题的影响并不是特别大

    但是的确可能某些机器的负载会高一些

  • 相关阅读:
    练习:给Keras ResNet50源码加上正则化参数, 修改激活函数为Elu
    凸集,凸函数,凸优化问题。
    Keras用动态数据生成器(DataGenerator)和fitgenerator动态训练模型
    Lagrangian 对偶 和 Slater 条件
    凸集分离定理
    Python 中的 sorted 和 sort的区别
    工作反思
    jemalloc
    libcoap
    dropbear
  • 原文地址:https://www.cnblogs.com/hg-super-man/p/12747688.html
Copyright © 2020-2023  润新知