• 麻省理工公开课:线性代数 第7课 求解Ax=0:主变量、特解


    参考资料:

    网易公开课:http://open.163.com/special/opencourse/daishu.html  麻省理工公开课:线性代数

    教材:Introduction to Linear Algebra, 4th edition  by Gilbert Strang

    链接:https://pan.baidu.com/s/1bvC85jbtOVdVdw8gYMpPZg 
    提取码:s9bl 

    假设:$A$为$3 imes 4$长方形矩阵线性相关),求解$Amathbf{x}=0$

    一、消元elimination(不改变零空间$N(A)$):得到行阶梯形式(row echelon form)的$U$

    (1)消元的过程中,方程组的解$mathbf{x}$不变,因此零空间不变,但是会改变列空间。

    (2)可以看出主元的数量为2,即矩阵的秩为2  //rank of $A$ = 主元(pivot)个数

    (3)主元对应的列为“主列”(1、3),其他列被称为“自由列”(2、4)  //自由列的含义对应变量(本例为$x_2, x_4$)为可以取任意值,通过回代求得主列(本例为$x_1, x_3$)的值

    (4)分别令自由变量$(x_2, x_4)$为(1,0)和(0,1),回代入方程组$Umathbf{x}=0$求得$x_1, x_3$(两组特解),最终构造包含所有解的零空间$N(A)$为:

    注:

    • 零空间为特解的线性组合,特解的个数与自由变量的个数一致  //若$m imes n$矩阵的秩为$r$,则自由变量的个数为$n-r$
    • 无自由变量时,零空间仅包含零向量

    (5)求解$Amathbf{x}=0$步骤:消元 —> 确定主元个数 —> 设置自由变量取值,利用回代法求解特解 —> 根据特解构造零空间

    (6)简化的行阶梯形式(reduced) $R$:令主元为1,且主元上下均为0  //$Rmathbf{x}=0$

    注:全0行表示原来的行是其他行的线性组合,所以被消元步骤消去

    (7)将主列和自由列分别放在一起,可以得到:

      求解$Rmathbf{x}=0$可以直接求解$RN=0$:

     

    注:零空间矩阵$N$的各列为求得的各个特解

  • 相关阅读:
    [swustoj 1021] Submissions of online judge
    [swustoj 404] 最小代价树
    [swustoj 917] K-lucky-number
    [swustoj 183] 种树
    [LA 3887] Slim Span
    [ahu 1248] NBA Finals
    用js获取当前月份的天数
    WampServer
    jquery checkbox选中、改变状态、change和click事件
    为什么排版引擎解析 CSS 选择器时一定要从右往左解析?
  • 原文地址:https://www.cnblogs.com/hg-love-dfc/p/10308777.html
Copyright © 2020-2023  润新知